A331965 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees.
1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 133, 152, 172, 212, 214, 224, 256, 262, 266, 301, 304, 326, 344, 371, 424, 428, 448, 512, 524, 526, 532, 602, 608, 622, 652, 688, 742, 749, 766, 817, 848, 856, 886, 896, 917, 1007, 1024, 1048, 1052
Offset: 1
Keywords
Examples
The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins: 1: o 4: (oo) 8: (ooo) 14: (o(oo)) 16: (oooo) 28: (oo(oo)) 32: (ooooo) 38: (o(ooo)) 56: (ooo(oo)) 64: (oooooo) 76: (oo(ooo)) 86: (o(o(oo))) 106: (o(oooo)) 112: (oooo(oo)) 128: (ooooooo) 133: ((oo)(ooo)) 152: (ooo(ooo)) 172: (oo(o(oo))) 212: (oo(oooo)) 214: (o(oo(oo))) The sequence of terms together with their prime indices begins: 1: {} 224: {1,1,1,1,1,4} 4: {1,1} 256: {1,1,1,1,1,1,1,1} 8: {1,1,1} 262: {1,32} 14: {1,4} 266: {1,4,8} 16: {1,1,1,1} 301: {4,14} 28: {1,1,4} 304: {1,1,1,1,8} 32: {1,1,1,1,1} 326: {1,38} 38: {1,8} 344: {1,1,1,14} 56: {1,1,1,4} 371: {4,16} 64: {1,1,1,1,1,1} 424: {1,1,1,16} 76: {1,1,8} 428: {1,1,28} 86: {1,14} 448: {1,1,1,1,1,1,4} 106: {1,16} 512: {1,1,1,1,1,1,1,1,1} 112: {1,1,1,1,4} 524: {1,1,32} 128: {1,1,1,1,1,1,1} 526: {1,56} 133: {4,8} 532: {1,1,4,8} 152: {1,1,1,8} 602: {1,4,14} 172: {1,1,14} 608: {1,1,1,1,1,8} 212: {1,1,16} 622: {1,64} 214: {1,28} 652: {1,1,38}
Links
Crossrefs
The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.
Programs
-
Mathematica
csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[100],csiQ]
Comments