This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331966 #9 Feb 09 2020 18:58:24 %S A331966 1,0,1,1,2,3,5,9,16,30,55,105,200,388,754,1483,2923,5807,11575,23190, %T A331966 46608,94043,190287,386214,785831,1602952,3276845,6712905,13778079, %U A331966 28330583,58350582,120370731,248676129,514459237,1065696295,2210302177,4589599429,9540623926 %N A331966 Number of lone-child-avoiding rooted semi-identity trees with n vertices. %C A331966 Lone-child-avoiding means there are no unary branchings. %C A331966 In a semi-identity tree, the non-leaf branches of any given vertex are distinct. %H A331966 Andrew Howroyd, <a href="/A331966/b331966.txt">Table of n, a(n) for n = 1..1000</a> %H A331966 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %e A331966 The a(1) = 1 through a(9) = 16 trees (empty column shown as dot): %e A331966 o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo) %e A331966 (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo)) %e A331966 (oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo)) %e A331966 (ooo(oo)) (ooo(ooo)) (ooo(oooo)) %e A331966 (o(o(oo))) (oooo(oo)) (oooo(ooo)) %e A331966 ((oo)(ooo)) (ooooo(oo)) %e A331966 (o(o(ooo))) ((oo)(oooo)) %e A331966 (o(oo(oo))) (o(o(oooo))) %e A331966 (oo(o(oo))) (o(oo)(ooo)) %e A331966 (o(oo(ooo))) %e A331966 (o(ooo(oo))) %e A331966 (oo(o(ooo))) %e A331966 (oo(oo(oo))) %e A331966 (ooo(o(oo))) %e A331966 ((oo)(o(oo))) %e A331966 (o(o(o(oo)))) %t A331966 ssb[n_]:=If[n==1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[ssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]]; %t A331966 Table[Length[ssb[n]],{n,10}] %o A331966 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A331966 seq(n)={my(v=[0, 0]); for(n=2, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ _Andrew Howroyd_, Feb 09 2020 %Y A331966 The non-semi case is A000007. %Y A331966 Lone-child-avoiding rooted trees are A001678. %Y A331966 The locally disjoint case is A212804. %Y A331966 Not requiring lone-child-avoidance gives A306200. %Y A331966 Matula-Goebel numbers of these trees are A331965. %Y A331966 The semi-lone-child-avoiding version is A331993. %Y A331966 Cf. A000081, A004111, A291636, A300660, A306202, A316694, A331683, A331686, A331783, A331875, A331964, A331994. %K A331966 nonn %O A331966 1,5 %A A331966 _Gus Wiseman_, Feb 05 2020 %E A331966 Terms a(31) and beyond from _Andrew Howroyd_, Feb 09 2020