This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331967 #4 Feb 06 2020 20:55:05 %S A331967 1,4,8,16,32,49,64,128,256,343,361,512,1024,2048,2401,2809,4096,6859, %T A331967 8192,16384,16807,17161,32768,51529,65536,96721,117649,130321,131072, %U A331967 148877,262144,516961,524288,823543,1048576,2097152,2248091,2476099,2621161,4194304 %N A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees. %C A331967 Lone-child-avoiding means there are no unary branchings. %C A331967 In an achiral rooted tree, the branches of any given vertex are all equal. %C A331967 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A331967 Consists of one and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence. %H A331967 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %H A331967 Gus Wiseman, <a href="/A331967/a331967.png">The first 30 lone-child-avoiding achiral rooted trees.</a> %F A331967 Intersection of A214577 (achiral) and A291636 (lone-child-avoiding). %e A331967 The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins: %e A331967 1: o %e A331967 4: (oo) %e A331967 8: (ooo) %e A331967 16: (oooo) %e A331967 32: (ooooo) %e A331967 49: ((oo)(oo)) %e A331967 64: (oooooo) %e A331967 128: (ooooooo) %e A331967 256: (oooooooo) %e A331967 343: ((oo)(oo)(oo)) %e A331967 361: ((ooo)(ooo)) %e A331967 512: (ooooooooo) %e A331967 1024: (oooooooooo) %e A331967 2048: (ooooooooooo) %e A331967 2401: ((oo)(oo)(oo)(oo)) %e A331967 2809: ((oooo)(oooo)) %e A331967 4096: (oooooooooooo) %e A331967 6859: ((ooo)(ooo)(ooo)) %e A331967 8192: (ooooooooooooo) %e A331967 16384: (oooooooooooooo) %e A331967 16807: ((oo)(oo)(oo)(oo)(oo)) %e A331967 17161: ((ooooo)(ooooo)) %e A331967 32768: (ooooooooooooooo) %e A331967 51529: (((oo)(oo))((oo)(oo))) %e A331967 65536: (oooooooooooooooo) %e A331967 96721: ((oooooo)(oooooo)) %t A331967 msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; %t A331967 Select[Range[10000],msQ] %Y A331967 A subset of A025475 (nonprime prime powers). %Y A331967 The enumeration of these trees by vertices is A167865. %Y A331967 Not requiring lone-child-avoidance gives A214577. %Y A331967 The semi-achiral version is A320269. %Y A331967 The semi-lone-child-avoiding version is A331992. %Y A331967 Achiral rooted trees are counted by A003238. %Y A331967 MG-numbers of planted achiral rooted trees are A280996. %Y A331967 MG-numbers of lone-child-avoiding rooted trees are A291636. %Y A331967 Cf. A001678, A007097, A061775, A196050, A276625, A291441, A320230, A320268, A331912, A331936, A331963, A331965, A331966, A331991. %K A331967 nonn %O A331967 1,2 %A A331967 _Gus Wiseman_, Feb 06 2020