A331969 T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.
1, 1, 1, 1, 4, 1, 1, 11, 7, 1, 1, 26, 30, 10, 1, 1, 57, 102, 58, 13, 1, 1, 120, 303, 256, 95, 16, 1, 1, 247, 825, 955, 515, 141, 19, 1, 1, 502, 2116, 3178, 2310, 906, 196, 22, 1, 1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1
Offset: 0
Examples
Triangle starts: [0] [1] [1] [1, 1] [2] [1, 4, 1] [3] [1, 11, 7, 1] [4] [1, 26, 30, 10, 1] [5] [1, 57, 102, 58, 13, 1] [6] [1, 120, 303, 256, 95, 16, 1] [7] [1, 247, 825, 955, 515, 141, 19, 1] [8] [1, 502, 2116, 3178, 2310, 906, 196, 22, 1] [9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1] ... Seen as a square array (the triangle is formed by descending antidiagonals): 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012] 1, 4, 11, 26, 57, 120, 247, 502, 1013, ... [A000295] 1, 7, 30, 102, 303, 825, 2116, 5200, 12381, ... [A045889] 1, 10, 58, 256, 955, 3178, 9740, 28064, 77093, ... [A055583] 1, 13, 95, 515, 2310, 9078, 32354, 106970, 333295, ... 1, 16, 141, 906, 4746, 21504, 87374, 326084, 1136799, ... 1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
Links
- Donghyun Kim and Lauren Williams, Schubert polynomials and the inhomogeneous TASEP on a ring, arXiv:2102.00560 [math.CO], 2021.
Crossrefs
Programs
-
Maple
gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32): # Prints the triangle: seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6); # Prints the square array: seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
-
Mathematica
(* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *) M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9]; Abs[#] & /@ Inverse[PadRight[M]]
Comments