cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331969 T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 7, 1, 1, 26, 30, 10, 1, 1, 57, 102, 58, 13, 1, 1, 120, 303, 256, 95, 16, 1, 1, 247, 825, 955, 515, 141, 19, 1, 1, 502, 2116, 3178, 2310, 906, 196, 22, 1, 1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1
Offset: 0

Views

Author

Peter Luschny, Feb 03 2020

Keywords

Comments

The triangle is the matrix inverse of the Riordan square (see A321620) generated by (1 + x - sqrt(1 - 6*x + x^2))/(4*x) (see A172094), where we take the absolute value of the terms.
T(n,k) is the number of evil-avoiding (2413, 3214, 4132, and 4213 avoiding) permutations of length (n+2) that start with 1 and whose inverse has k descents. - Donghyun Kim, Aug 16 2021

Examples

			Triangle starts:
[0] [1]
[1] [1,    1]
[2] [1,    4,    1]
[3] [1,   11,    7,    1]
[4] [1,   26,   30,   10,    1]
[5] [1,   57,  102,   58,   13,    1]
[6] [1,  120,  303,  256,   95,   16,    1]
[7] [1,  247,  825,  955,  515,  141,   19,   1]
[8] [1,  502, 2116, 3178, 2310,  906,  196,  22,  1]
[9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1]
...
Seen as a square array (the triangle is formed by descending antidiagonals):
1,  1,   1,    1,    1,     1,      1,      1,       1, ... [A000012]
1,  4,  11,   26,   57,   120,    247,    502,    1013, ... [A000295]
1,  7,  30,  102,  303,   825,   2116,   5200,   12381, ... [A045889]
1, 10,  58,  256,  955,  3178,   9740,  28064,   77093, ... [A055583]
1, 13,  95,  515, 2310,  9078,  32354, 106970,  333295, ...
1, 16, 141,  906, 4746, 21504,  87374, 326084, 1136799, ...
1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
		

Crossrefs

Row sums A006012, alternating row sums A118434 with different signs, central column A091527.
T(n, 1) = A000295(n+1) for n >= 1, T(n, 2) = A045889(n-2) for n >= 2, T(n, 3) = A055583(n-3) for n >= 3.
Cf. A172094 (inverse up to sign).

Programs

  • Maple
    gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32):
    # Prints the triangle:
    seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6);
    # Prints the square array:
    seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
  • Mathematica
    (* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *)
    M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9];
    Abs[#] & /@ Inverse[PadRight[M]]