cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A331971 a(n) is the number of values of m such that the sum of proper bi-unitary divisors of m (A331970) is n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 6, 1, 4, 2, 4, 2, 5, 0, 3, 1, 4, 2, 5, 1, 4, 2, 4, 1, 6, 2, 5, 2, 5, 2, 8, 1, 6, 1, 4, 2, 7, 1, 5, 3, 5, 2, 8, 0, 5, 1, 6, 1, 8, 2, 5, 3, 6, 3, 9, 0, 6, 2, 5, 1, 9, 1, 7, 1
Offset: 2

Views

Author

Amiram Eldar, Feb 03 2020

Keywords

Comments

The bi-unitary version of A048138.
The offset is 2 as in A048138 since there are infinitely many numbers k (the primes and squares of primes) for which A331970(k) = 1.

Examples

			a(8) = 2 since 8 is the sum of the proper bi-unitary divisors of 2 numbers: 10 (1 + 2 + 5) and 12 (1 + 3 + 4).
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; m = 300; v = Table[0, {m}]; Do[b = bs[k]; If[2 <= b <= m, v[[b]]++], {k, 1, m^2}]; Rest @ v

A324276 Bi-unitary untouchable numbers: numbers that are not the sum of aliquot bi-unitary divisors of any number.

Original entry on oeis.org

2, 3, 4, 5, 38, 68, 80, 96, 98, 128, 138, 146, 158, 164, 180, 188, 192, 206, 208, 210, 212, 222, 224, 248, 264, 278, 290, 300, 304, 308, 324, 326, 328, 338, 360, 374, 380, 390, 398, 416, 418, 420, 430, 432, 458, 476, 480, 488, 498, 516, 518, 530, 536, 542, 548
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2019

Keywords

Crossrefs

Cf. A188999, A005114, A063948 (unitary), A324277 (infinitary), A324278 (exponential), A331970.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := bsigma[n] = Times @@ (fun @@@ FactorInteger[n]); untouchableQ[n_] := Catch[ Do[ If[n == bsigma[k]-k, Throw[True]], {k, 0, (n-1)^2}]] === Null; Reap[ Table[ If[ untouchableQ[n], Sow[n]], {n, 2, 550}]][[2, 1]] (* after Jean-François Alcover at A005114 *)

A331972 Bi-unitary highly touchable numbers: numbers m > 1 such that a record number of numbers k have m as the sum of the proper bi-unitary divisors of k.

Original entry on oeis.org

2, 6, 8, 17, 29, 31, 55, 79, 91, 115, 121, 175, 181, 211, 295, 301, 361, 391, 421, 481, 511, 571, 631, 781, 841, 991, 1051, 1231, 1261, 1471, 1561, 1651, 1681, 1891, 2101, 2311, 2731, 3151, 3361, 3571, 3991, 4201, 4291, 4411, 4621, 5251, 5461, 6091, 6511, 6931
Offset: 1

Views

Author

Amiram Eldar, Feb 03 2020

Keywords

Comments

The corresponding record values are 0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 14, 15, ...
The bi-unitary version of A238895.

Examples

			a(1) = 2 since it is the first number which is not the sum of proper bi-unitary divisors of any number.
a(2) = 6 since it is the least number which is the sum of proper bi-unitary divisors of one number: 6 = A331970(6).
a(3) = 8 since it is the least number which is the sum of proper bi-unitary divisors of 2 numbers: 8 = A331970(10) = A331970(12).
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; m = 300; v = Table[0, {m}]; Do[b = bs[k]; If[2 <= b <= m, v[[b]]++], {k, 1, m^2}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 2, m}]; s
Showing 1-3 of 3 results.