A331971 a(n) is the number of values of m such that the sum of proper bi-unitary divisors of m (A331970) is n.
0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 6, 1, 4, 2, 4, 2, 5, 0, 3, 1, 4, 2, 5, 1, 4, 2, 4, 1, 6, 2, 5, 2, 5, 2, 8, 1, 6, 1, 4, 2, 7, 1, 5, 3, 5, 2, 8, 0, 5, 1, 6, 1, 8, 2, 5, 3, 6, 3, 9, 0, 6, 2, 5, 1, 9, 1, 7, 1
Offset: 2
Keywords
Examples
a(8) = 2 since 8 is the sum of the proper bi-unitary divisors of 2 numbers: 10 (1 + 2 + 5) and 12 (1 + 3 + 4).
Links
- Amiram Eldar, Table of n, a(n) for n = 2..30000
Programs
-
Mathematica
fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; m = 300; v = Table[0, {m}]; Do[b = bs[k]; If[2 <= b <= m, v[[b]]++], {k, 1, m^2}]; Rest @ v
Comments