A331972 Bi-unitary highly touchable numbers: numbers m > 1 such that a record number of numbers k have m as the sum of the proper bi-unitary divisors of k.
2, 6, 8, 17, 29, 31, 55, 79, 91, 115, 121, 175, 181, 211, 295, 301, 361, 391, 421, 481, 511, 571, 631, 781, 841, 991, 1051, 1231, 1261, 1471, 1561, 1651, 1681, 1891, 2101, 2311, 2731, 3151, 3361, 3571, 3991, 4201, 4291, 4411, 4621, 5251, 5461, 6091, 6511, 6931
Offset: 1
Keywords
Examples
a(1) = 2 since it is the first number which is not the sum of proper bi-unitary divisors of any number. a(2) = 6 since it is the least number which is the sum of proper bi-unitary divisors of one number: 6 = A331970(6). a(3) = 8 since it is the least number which is the sum of proper bi-unitary divisors of 2 numbers: 8 = A331970(10) = A331970(12).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..73 (terms below 30000)
Programs
-
Mathematica
fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); bs[n_] := bsigma[n] - n; m = 300; v = Table[0, {m}]; Do[b = bs[k]; If[2 <= b <= m, v[[b]]++], {k, 1, m^2}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 2, m}]; s
Comments