This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331988 #37 May 26 2020 15:26:47 %S A331988 1,2,2,6,9,3,24,64,20,4,120,625,216,36,5,720,7776,3136,512,56,6,5040, %T A331988 117649,59049,10000,1000,81,7,40320,2097152,1331000,248832,24336,1728, %U A331988 110,8,362880,43046721,35831808,7529536,759375,50625,2744,144,9,3628800,1000000000,1097199376,268435456,28652616,1889568,93636,4096,182,10 %N A331988 Table T(n,k) read by antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}. %C A331988 A dual sequence to A260355. See arXiv link for sets of permutations that achieve the value of T(n,k). The minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] is equal to n!*k^n. %H A331988 Chai Wah Wu, <a href="/A331988/b331988.txt">Table of n, a(n) for n = 1..70</a> %H A331988 Chai Wah Wu, <a href="http://arxiv.org/abs/1508.02934">Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized</a>, arXiv:1508.02934 [math.CO], 2015-2020. %H A331988 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020. %F A331988 T(n,n) = (n*(n+1)/2)^n = A061718(n). %F A331988 T(n,k) <= (k(n+1)/2)^n. %F A331988 T(1,k) = k = A000027(k). %F A331988 T(n,1) = n! = A000142(n). %F A331988 T(2,2m) = 9m^2 = A016766(m). %F A331988 T(2,2m+1) = (3m+1)*(3m+2) = A001504(m). %F A331988 T(n,2) = (n+1)^n = A000169(n+1). %F A331988 T(3,k) = 8k^3 = A016743(k) for k > 1. %F A331988 If n divides k then T(n,k) = (k*(n+1)/2)^n. %F A331988 If k is even then T(n,k) = (k*(n+1)/2)^n. %F A331988 If n is odd and k >= n-1 then T(n,k) = (k*(n+1)/2)^n. %F A331988 If n is even and k is odd such that k >= n-1, then T(n,k) = ((k^2*(n+1)^2-1)/4)^(n/2). %e A331988 T(n,k) %e A331988 k 1 2 3 4 5 6 7 8 9 10 11 12 %e A331988 --------------------------------------------------------------------------------- %e A331988 n 1| 1 2 3 4 5 6 7 8 9 10 11 12 %e A331988 2| 2 9 20 36 56 81 110 144 182 225 272 324 %e A331988 3| 6 64 216 512 1000 1728 2744 4096 5832 8000 10648 13824 %e A331988 4| 24 625 3136 10000 24336 50625 93636 160000 256036 390625 571536 810000 %o A331988 (Python) %o A331988 from itertools import permutations, combinations_with_replacement %o A331988 def A331988(n,k): # compute T(n,k) %o A331988 if k == 1: %o A331988 count = 1 %o A331988 for i in range(1,n): %o A331988 count *= i+1 %o A331988 return count %o A331988 ntuple, count = tuple(range(1,n+1)), 0 %o A331988 for s in combinations_with_replacement(permutations(ntuple,n),k-2): %o A331988 t = list(ntuple) %o A331988 for d in s: %o A331988 for i in range(n): %o A331988 t[i] += d[i] %o A331988 t.sort() %o A331988 w = 1 %o A331988 for i in range(n): %o A331988 w *= (n-i)+t[i] %o A331988 if w > count: %o A331988 count = w %o A331988 return count %Y A331988 Cf. A000027, A000142, A000169, A001504, A016743, A016766, A061711, A061718, A260355. %K A331988 nonn,tabl %O A331988 1,2 %A A331988 _Chai Wah Wu_, Feb 23 2020