This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331992 #5 Feb 06 2020 20:55:22 %S A331992 1,2,4,8,9,16,27,32,49,64,81,128,243,256,343,361,512,529,729,1024, %T A331992 2048,2187,2401,2809,4096,6561,6859,8192,10609,12167,16384,16807, %U A331992 17161,19683,32768,51529,59049,65536,96721,117649,130321,131072,148877,175561,177147 %N A331992 Matula-Goebel numbers of semi-lone-child-avoiding achiral rooted trees. %C A331992 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. %C A331992 In an achiral rooted tree, the branches of any given vertex are all equal. %C A331992 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A331992 Consists of one, two, and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence. %H A331992 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %H A331992 Gus Wiseman, <a href="/A331992/a331992.png">The first 36 semi-lone-child-avoiding achiral rooted trees.</a> %F A331992 Intersection of A214577 (achiral) and A331935 (semi-lone-child-avoiding). %e A331992 The sequence of all semi-lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins: %e A331992 1: o %e A331992 2: (o) %e A331992 4: (oo) %e A331992 8: (ooo) %e A331992 9: ((o)(o)) %e A331992 16: (oooo) %e A331992 27: ((o)(o)(o)) %e A331992 32: (ooooo) %e A331992 49: ((oo)(oo)) %e A331992 64: (oooooo) %e A331992 81: ((o)(o)(o)(o)) %e A331992 128: (ooooooo) %e A331992 243: ((o)(o)(o)(o)(o)) %e A331992 256: (oooooooo) %e A331992 343: ((oo)(oo)(oo)) %e A331992 361: ((ooo)(ooo)) %e A331992 512: (ooooooooo) %e A331992 529: (((o)(o))((o)(o))) %e A331992 729: ((o)(o)(o)(o)(o)(o)) %e A331992 1024: (oooooooooo) %t A331992 msQ[n_]:=n<=2||!PrimeQ[n]&&Length[FactorInteger[n]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; %t A331992 Select[Range[10000],msQ] %Y A331992 Except for two, a subset of A025475 (nonprime prime powers). %Y A331992 Not requiring achirality gives A331935. %Y A331992 The semi-achiral version is A331936. %Y A331992 The fully-chiral version is A331963. %Y A331992 The semi-chiral version is A331994. %Y A331992 The non-semi version is counted by A331967. %Y A331992 The enumeration of these trees by vertices is A331991. %Y A331992 Achiral rooted trees are counted by A003238. %Y A331992 MG-numbers of achiral rooted trees are A214577. %Y A331992 Cf. A001678, A007097, A050381, A061775, A167865, A196050, A276625, A280996, A291441, A291636, A320230, A320269, A331912, A331933, A331965. %K A331992 nonn %O A331992 1,2 %A A331992 _Gus Wiseman_, Feb 06 2020