This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331993 #9 Feb 09 2020 18:58:57 %S A331993 1,1,1,2,3,6,11,22,43,90,185,393,835,1802,3904,8540,18756,41463,92022, %T A331993 205179,459086,1030917,2321949,5245104,11878750,26967957,61359917, %U A331993 139902251,319591669,731385621,1676573854,3849288924,8850674950,20378544752,46982414535 %N A331993 Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices. %C A331993 Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf. %C A331993 In a semi-identity tree, the non-leaf branches of any given vertex are distinct. %H A331993 Andrew Howroyd, <a href="/A331993/b331993.txt">Table of n, a(n) for n = 1..1000</a> %e A331993 The a(1) = 1 through a(7) = 11 trees: %e A331993 o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) %e A331993 (o(o)) (o(oo)) (o(ooo)) (o(oooo)) %e A331993 (oo(o)) (oo(oo)) (oo(ooo)) %e A331993 (ooo(o)) (ooo(oo)) %e A331993 ((o)(oo)) (oooo(o)) %e A331993 (o(o(o))) ((o)(ooo)) %e A331993 (o(o)(oo)) %e A331993 (o(o(oo))) %e A331993 (o(oo(o))) %e A331993 (oo(o(o))) %e A331993 ((o)(o(o))) %t A331993 sssb[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]]; %t A331993 Table[Length[sssb[n]],{n,10}] %o A331993 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A331993 seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ _Andrew Howroyd_, Feb 09 2020 %Y A331993 Not requiring any lone-child-avoidance gives A306200. %Y A331993 The locally disjoint case is A324969 (essentially A000045). %Y A331993 Matula-Goebel numbers of these trees are A331994. %Y A331993 Lone-child-avoiding rooted identity trees are A000007. %Y A331993 Semi-lone-child-avoiding rooted trees are A331934. %Y A331993 Semi-lone-child-avoiding rooted identity trees are A331964. %Y A331993 Lone-child-avoiding rooted semi-identity trees are A331966. %Y A331993 Cf. A001678, A004111, A300660, A316694, A331683, A331686, A331783, A331875, A331933, A331963, A331965. %K A331993 nonn %O A331993 1,4 %A A331993 _Gus Wiseman_, Feb 05 2020 %E A331993 Terms a(26) and beyond from _Andrew Howroyd_, Feb 09 2020