cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331994 Matula-Goebel numbers of semi-lone-child-avoiding rooted semi-identity trees.

This page as a plain text file.
%I A331994 #9 Feb 08 2020 11:46:36
%S A331994 1,2,4,6,8,12,14,16,21,24,26,28,32,38,39,42,48,52,56,57,64,74,76,78,
%T A331994 84,86,91,96,104,106,111,112,114,128,129,133,146,148,152,156,159,168,
%U A331994 172,178,182,192,202,208,212,214,219,222,224,228,247,256,258,259,262
%N A331994 Matula-Goebel numbers of semi-lone-child-avoiding rooted semi-identity trees.
%C A331994 Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
%C A331994 In a semi-identity tree, the non-leaf branches of any given vertex are distinct.
%C A331994 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
%C A331994 Consists of one, two, and all numbers that can be written as a power of two (other than 2) times a squarefree number whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.
%H A331994 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a>
%F A331994 Intersection of A306202 and A331935.
%e A331994 The sequence of all semi-lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
%e A331994    1: o
%e A331994    2: (o)
%e A331994    4: (oo)
%e A331994    6: (o(o))
%e A331994    8: (ooo)
%e A331994   12: (oo(o))
%e A331994   14: (o(oo))
%e A331994   16: (oooo)
%e A331994   21: ((o)(oo))
%e A331994   24: (ooo(o))
%e A331994   26: (o(o(o)))
%e A331994   28: (oo(oo))
%e A331994   32: (ooooo)
%e A331994   38: (o(ooo))
%e A331994   39: ((o)(o(o)))
%e A331994   42: (o(o)(oo))
%e A331994   48: (oooo(o))
%e A331994   52: (oo(o(o)))
%e A331994   56: (ooo(oo))
%e A331994   57: ((o)(ooo))
%e A331994 The sequence of terms together with their prime indices begins:
%e A331994     1: {}              64: {1,1,1,1,1,1}      159: {2,16}
%e A331994     2: {1}             74: {1,12}             168: {1,1,1,2,4}
%e A331994     4: {1,1}           76: {1,1,8}            172: {1,1,14}
%e A331994     6: {1,2}           78: {1,2,6}            178: {1,24}
%e A331994     8: {1,1,1}         84: {1,1,2,4}          182: {1,4,6}
%e A331994    12: {1,1,2}         86: {1,14}             192: {1,1,1,1,1,1,2}
%e A331994    14: {1,4}           91: {4,6}              202: {1,26}
%e A331994    16: {1,1,1,1}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
%e A331994    21: {2,4}          104: {1,1,1,6}          212: {1,1,16}
%e A331994    24: {1,1,1,2}      106: {1,16}             214: {1,28}
%e A331994    26: {1,6}          111: {2,12}             219: {2,21}
%e A331994    28: {1,1,4}        112: {1,1,1,1,4}        222: {1,2,12}
%e A331994    32: {1,1,1,1,1}    114: {1,2,8}            224: {1,1,1,1,1,4}
%e A331994    38: {1,8}          128: {1,1,1,1,1,1,1}    228: {1,1,2,8}
%e A331994    39: {2,6}          129: {2,14}             247: {6,8}
%e A331994    42: {1,2,4}        133: {4,8}              256: {1,1,1,1,1,1,1,1}
%e A331994    48: {1,1,1,1,2}    146: {1,21}             258: {1,2,14}
%e A331994    52: {1,1,6}        148: {1,1,12}           259: {4,12}
%e A331994    56: {1,1,1,4}      152: {1,1,1,8}          262: {1,32}
%e A331994    57: {2,8}          156: {1,1,2,6}          266: {1,4,8}
%t A331994 scsiQ[n_]:=n==1||n==2||!PrimeQ[n]&&FreeQ[FactorInteger[n],{_?(#>2&),_?(#>1&)}]&&And@@scsiQ/@PrimePi/@First/@FactorInteger[n];
%t A331994 Select[Range[100],scsiQ]
%Y A331994 The locally disjoint version is A331681.
%Y A331994 The enumeration of these trees by vertices is A331993.
%Y A331994 Semi-identity trees are A306200.
%Y A331994 MG-numbers of rooted identity trees are A276625.
%Y A331994 MG-numbers of lone-child-avoiding rooted identity trees are {1}.
%Y A331994 MG-numbers of lone-child-avoiding rooted trees are A291636.
%Y A331994 MG-numbers of semi-identity trees are A306202.
%Y A331994 MG-numbers of semi-lone-child-avoiding rooted trees are A331935.
%Y A331994 MG-numbers of semi-lone-child-avoiding rooted identity trees are A331963.
%Y A331994 MG-numbers of lone-child-avoiding rooted semi-identity trees are A331965.
%Y A331994 Cf. A004111, A007097, A061775, A122132, A196050, A320269, A331683, A331873, A331934, A331936, A331964, A331966.
%K A331994 nonn
%O A331994 1,2
%A A331994 _Gus Wiseman_, Feb 05 2020