This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331994 #9 Feb 08 2020 11:46:36 %S A331994 1,2,4,6,8,12,14,16,21,24,26,28,32,38,39,42,48,52,56,57,64,74,76,78, %T A331994 84,86,91,96,104,106,111,112,114,128,129,133,146,148,152,156,159,168, %U A331994 172,178,182,192,202,208,212,214,219,222,224,228,247,256,258,259,262 %N A331994 Matula-Goebel numbers of semi-lone-child-avoiding rooted semi-identity trees. %C A331994 Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf. %C A331994 In a semi-identity tree, the non-leaf branches of any given vertex are distinct. %C A331994 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A331994 Consists of one, two, and all numbers that can be written as a power of two (other than 2) times a squarefree number whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n. %H A331994 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %F A331994 Intersection of A306202 and A331935. %e A331994 The sequence of all semi-lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins: %e A331994 1: o %e A331994 2: (o) %e A331994 4: (oo) %e A331994 6: (o(o)) %e A331994 8: (ooo) %e A331994 12: (oo(o)) %e A331994 14: (o(oo)) %e A331994 16: (oooo) %e A331994 21: ((o)(oo)) %e A331994 24: (ooo(o)) %e A331994 26: (o(o(o))) %e A331994 28: (oo(oo)) %e A331994 32: (ooooo) %e A331994 38: (o(ooo)) %e A331994 39: ((o)(o(o))) %e A331994 42: (o(o)(oo)) %e A331994 48: (oooo(o)) %e A331994 52: (oo(o(o))) %e A331994 56: (ooo(oo)) %e A331994 57: ((o)(ooo)) %e A331994 The sequence of terms together with their prime indices begins: %e A331994 1: {} 64: {1,1,1,1,1,1} 159: {2,16} %e A331994 2: {1} 74: {1,12} 168: {1,1,1,2,4} %e A331994 4: {1,1} 76: {1,1,8} 172: {1,1,14} %e A331994 6: {1,2} 78: {1,2,6} 178: {1,24} %e A331994 8: {1,1,1} 84: {1,1,2,4} 182: {1,4,6} %e A331994 12: {1,1,2} 86: {1,14} 192: {1,1,1,1,1,1,2} %e A331994 14: {1,4} 91: {4,6} 202: {1,26} %e A331994 16: {1,1,1,1} 96: {1,1,1,1,1,2} 208: {1,1,1,1,6} %e A331994 21: {2,4} 104: {1,1,1,6} 212: {1,1,16} %e A331994 24: {1,1,1,2} 106: {1,16} 214: {1,28} %e A331994 26: {1,6} 111: {2,12} 219: {2,21} %e A331994 28: {1,1,4} 112: {1,1,1,1,4} 222: {1,2,12} %e A331994 32: {1,1,1,1,1} 114: {1,2,8} 224: {1,1,1,1,1,4} %e A331994 38: {1,8} 128: {1,1,1,1,1,1,1} 228: {1,1,2,8} %e A331994 39: {2,6} 129: {2,14} 247: {6,8} %e A331994 42: {1,2,4} 133: {4,8} 256: {1,1,1,1,1,1,1,1} %e A331994 48: {1,1,1,1,2} 146: {1,21} 258: {1,2,14} %e A331994 52: {1,1,6} 148: {1,1,12} 259: {4,12} %e A331994 56: {1,1,1,4} 152: {1,1,1,8} 262: {1,32} %e A331994 57: {2,8} 156: {1,1,2,6} 266: {1,4,8} %t A331994 scsiQ[n_]:=n==1||n==2||!PrimeQ[n]&&FreeQ[FactorInteger[n],{_?(#>2&),_?(#>1&)}]&&And@@scsiQ/@PrimePi/@First/@FactorInteger[n]; %t A331994 Select[Range[100],scsiQ] %Y A331994 The locally disjoint version is A331681. %Y A331994 The enumeration of these trees by vertices is A331993. %Y A331994 Semi-identity trees are A306200. %Y A331994 MG-numbers of rooted identity trees are A276625. %Y A331994 MG-numbers of lone-child-avoiding rooted identity trees are {1}. %Y A331994 MG-numbers of lone-child-avoiding rooted trees are A291636. %Y A331994 MG-numbers of semi-identity trees are A306202. %Y A331994 MG-numbers of semi-lone-child-avoiding rooted trees are A331935. %Y A331994 MG-numbers of semi-lone-child-avoiding rooted identity trees are A331963. %Y A331994 MG-numbers of lone-child-avoiding rooted semi-identity trees are A331965. %Y A331994 Cf. A004111, A007097, A061775, A122132, A196050, A320269, A331683, A331873, A331934, A331936, A331964, A331966. %K A331994 nonn %O A331994 1,2 %A A331994 _Gus Wiseman_, Feb 05 2020