cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332009 Irregular triangle of numerators of the average value of the first letter over all derangements of {1, 2, ..., n} with k descents.

This page as a plain text file.
%I A332009 #18 Mar 30 2024 23:08:37
%S A332009 2,5,11,3,4,23,10,17,47,367,173,121,6,95,1431,3973,2513,331,191,567,
%T A332009 1395,8011,391,761,8,383,8615,139897,78483,27201,21685,113,767,28073,
%U A332009 715277,1298393,158189,1310499,40613,4049,10,1535,89311,1721203,9555617,37414903,27455053,7254087,582767,4549
%N A332009 Irregular triangle of numerators of the average value of the first letter over all derangements of {1, 2, ..., n} with k descents.
%C A332009 Even-indexed rows have length n - 1; odd-indexed rows have length n - 2.
%C A332009 Conjecture: T(n, 1) = A083329(n - 1).
%C A332009 T(2n, 2n-1) = 2n, since the only derangement of 2n letters with 2n-1 descents is [2n, 2n-1,...,3,2,1].
%C A332009 The analogous sequence for permutations is T'(n, k) = k + 1.
%e A332009 Triangle begins:
%e A332009     2;
%e A332009     5;
%e A332009    11,    3,    4;
%e A332009    23,   10,   17;
%e A332009    47,  367,  173,  121,   6;
%e A332009    95, 1431, 3973, 2513, 331;
%e A332009   191,  567, 1395, 8011, 391, 761, 8.
%e A332009 T(4,1) = 11 because the derangements of four letters with one descent are
%e A332009 [2,3,4,1], [2,4,1,3], [3,4,1,2], and [4,1,2,3], and the expected value of the first letter is (2+2+3+4)/4 = 11/4, which has 11 as its numerator.
%o A332009 (PARI)
%o A332009 descents(p)={sum(i=2, #p, p[i]<p[i-1])}
%o A332009 isderange(p)={for(i=1, #p, if(p[i]==i, return(0))); 1}
%o A332009 qrow(n, f=numerator)={my(s=vector(n-n%2-1), d=vector(#s)); forperm(n, p, if(isderange(p), my(k=descents(p)); d[k]++; s[k]+=p[1])); vector(#s, k, f(s[k]/d[k]))}
%o A332009 { for(n=2, 8, print(qrow(n, numerator))) } \\ _Andrew Howroyd_, Feb 02 2022
%Y A332009 Cf. A000166, A083329, A219836.
%Y A332009 Denominators are given by A332010.
%K A332009 nonn,tabf
%O A332009 2,1
%A A332009 _Peter Kagey_, Feb 04 2020
%E A332009 Terms a(27) and beyond from _Andrew Howroyd_, Feb 02 2022