This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332013 #10 Feb 05 2020 08:59:02 %S A332013 1,1,1,1,2,1,1,1,1,1,1,2,3,2,1,1,1,3,3,1,1,1,2,1,4,1,2,1,1,1,1,1,1,1, %T A332013 1,1,1,2,3,2,5,2,3,2,1,1,1,3,3,5,5,3,3,1,1,1,2,1,3,3,6,3,3,1,2,1,1,1, %U A332013 1,1,3,3,3,3,1,1,1,1,1,2,3,2,1,3,7,3,1 %N A332013 T(n, k) is the least positive m such that floor(n/m) AND floor(k/m) = 0 (where AND denotes the bitwise AND operator). Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0. %C A332013 Sierpinski gasket appears at different scales in the representation of the table (see illustration in Links section). %H A332013 Rémy Sigrist, <a href="/A332013/b332013.txt">Table of n, a(n) for n = 0..10010</a> (antidiagonals 0..140) %H A332013 Rémy Sigrist, <a href="/A332013/a332013.png">Colored representation of T(n, k) for n, k = 0..1024</a> (where the hue is function of T(n, k), red pixels correspond to 1's) %H A332013 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle">Sierpiński triangle</a> %F A332013 T(n, k) = T(k, n). %F A332013 T(n, k) = 1 iff n AND k = 0. %F A332013 T(n, n) = n+1. %F A332013 T(n, n+1) = A000265(n+1). %e A332013 Array T(n, k) begins: %e A332013 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A332013 ---+--------------------------------------- %e A332013 0| 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A332013 1| 1 2 1 2 1 2 1 2 1 2 1 2 1 %e A332013 2| 1 1 3 3 1 1 3 3 1 1 3 3 1 %e A332013 3| 1 2 3 4 1 2 3 3 1 2 4 4 1 %e A332013 4| 1 1 1 1 5 5 3 3 1 1 1 1 3 %e A332013 5| 1 2 1 2 5 6 3 3 1 2 1 2 3 %e A332013 6| 1 1 3 3 3 3 7 7 1 1 4 4 3 %e A332013 7| 1 2 3 3 3 3 7 8 1 2 4 4 3 %e A332013 8| 1 1 1 1 1 1 1 1 9 9 5 5 3 %e A332013 9| 1 2 1 2 1 2 1 2 9 10 5 5 3 %e A332013 10| 1 1 3 4 1 1 4 4 5 5 11 11 3 %e A332013 11| 1 2 3 4 1 2 4 4 5 5 11 12 3 %e A332013 12| 1 1 1 1 3 3 3 3 3 3 3 3 13 %o A332013 (PARI) T(n,k) = for (m=1, oo, if (bitand(n\m, k\m)==0, return (m))) %Y A332013 Cf. A000265, A331886. %K A332013 nonn,base,tabl %O A332013 0,5 %A A332013 _Rémy Sigrist_, Feb 04 2020