This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332022 #24 Apr 27 2020 08:16:30 %S A332022 0,2,1,5,7,3,8,4,6,13,14,15,18,9,10,11,21,23,12,24,22,16,20,17,19,34, %T A332022 35,36,37,38,39,40,41,47,25,26,27,28,29,30,31,32,55,57,56,60,62,33,58, %U A332022 59,61,63,64,65,66,42,44,43,48,49,45,50,46,51,52,53,54,89 %N A332022 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, n and a(n) have no common term in their Zeckendorf representations. %C A332022 This sequence is a self-inverse permutation of the nonnegative integers. %C A332022 Apparently, {a(0), ..., a(k)} = {0, ..., k} for infinitely many integers k. %H A332022 Rémy Sigrist, <a href="/A332022/b332022.txt">Table of n, a(n) for n = 0..8360</a> %H A332022 Rémy Sigrist, <a href="/A332022/a332022.png">Scatterplot of (x, y) such that x and y have no common term in their Zeckendorf representations and 0 <= x, y <= 1218</a> %H A332022 Rémy Sigrist, <a href="/A332022/a332022.gp.txt">PARI program for A332022</a> %H A332022 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A332022 A003714(n) AND A003714(a(n)) = 0 for any n >= 0 (where AND denotes the bitwise AND operator). %e A332022 The first terms, alongside the Zeckendorf representation in binary of n and of a(n), are: %e A332022 n a(n) z(n) z(a(n)) %e A332022 -- ---- ----- ------- %e A332022 0 0 0 0 %e A332022 1 2 1 10 %e A332022 2 1 10 1 %e A332022 3 5 100 1000 %e A332022 4 7 101 1010 %e A332022 5 3 1000 100 %e A332022 6 8 1001 10000 %e A332022 7 4 1010 101 %e A332022 8 6 10000 1001 %e A332022 9 13 10001 100000 %e A332022 10 14 10010 100001 %o A332022 (PARI) See Links section. %Y A332022 Cf. A003714, A238757 (binary analog), A332565. %K A332022 nonn %O A332022 0,2 %A A332022 _Rémy Sigrist_, Apr 23 2020