This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332023 #16 Mar 07 2021 00:59:12 %S A332023 0,1,3,4,6,9,10,12,15,19,20,22,25,29,34,35,37,40,44,49,55,56,58,61,65, %T A332023 70,76,83,84,86,89,93,98,104,111,119,120,122,125,129,134,140,147,155, %U A332023 164,165,167,170,174,179,185,192,200,209,219 %N A332023 T(n, k) = binomial(n+2, 3) + binomial(k+1, 2) + binomial(k, 1). Triangle read by rows, T(n, k) for 0 <= k <= n. %C A332023 The sequence increases monotonically. %F A332023 T(n, k) = (1/6)*(3*k^2 + 9*k + n*(n + 1)*(n + 2)). %e A332023 The triangle starts: %e A332023 [0] 0; %e A332023 [1] 1, 3; %e A332023 [2] 4, 6, 9; %e A332023 [3] 10, 12, 15, 19; %e A332023 [4] 20, 22, 25, 29, 34; %e A332023 [5] 35, 37, 40, 44, 49, 55; %e A332023 [6] 56, 58, 61, 65, 70, 76, 83; %e A332023 [7] 84, 86, 89, 93, 98, 104, 111, 119; %e A332023 [8] 120, 122, 125, 129, 134, 140, 147, 155, 164; %e A332023 [9] 165, 167, 170, 174, 179, 185, 192, 200, 209, 219; %p A332023 T := (n, k) -> binomial(n+2, 3) + binomial(k+1, 2) + binomial(k, 1): %p A332023 seq(seq(T(n, k), k=0..n), n=0..9); %Y A332023 Cf. A000292 (first column), A062748 (diagonal), A005286 (subdiagonal), A332697 (row sums). %Y A332023 Cf. A014370. %K A332023 nonn,tabl %O A332023 0,3 %A A332023 _Peter Luschny_, Feb 20 2020