cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332041 Indices of records in A332040.

This page as a plain text file.
%I A332041 #8 Feb 06 2020 06:26:19
%S A332041 1,6,30,330,390,2730,5460,12090,60060,92820,223860,1021020,1922700,
%T A332041 3805620,13458900,41861820,110362980,113573460,227146920,251170920,
%U A332041 502341840,563603040,888287400,1270629360,1776574800,3310889400,23107724640,27939071160,33754921200,36419783400
%N A332041 Indices of records in A332040.
%C A332041 Numbers k such that esigma(x) = k has more solutions x than any smaller k, where esigma(x) is the sum of exponential divisors of x (A051377).
%C A332041 The exponential version of A145899.
%C A332041 The corresponding number of solutions for each term is 1, 2, 5, 6, 8, 9, 10, 12, 15, 16, 19, 22, 27, 29, 35, 37, 38, 44, 45, 47, 50, 51, 52, 53, 66, 80, 83, 89, 95, 102.
%e A332041 There are 2 solutions to esigma(x) = 6: esigma(4) = esigma(6) = 6. For all m < 6 there are no more than one solution to esigma(x) = m, thus 6 is in the sequence.
%t A332041 f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; m = 10000; v = Table[0, {m}]; Do[sig = esigma[k]; If[sig <= m, v[[sig]]++], {k, 1, m}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 1, m}]; s
%Y A332041 Cf. A051377, A145899, A289132, A332037, A332039, A332040.
%K A332041 nonn
%O A332041 1,2
%A A332041 _Amiram Eldar_, Feb 05 2020
%E A332041 a(26)-a(30) from _Giovanni Resta_, Feb 06 2020