A332045 Numbers k such that ceiling(Pi/arctan(1/k)) = ceiling(k*Pi)+1.
6, 7, 14, 21, 28, 113, 226, 339, 452, 565, 678, 791, 904, 1017, 1130, 1243, 1356, 1469, 1582, 1695, 1808, 1921, 33215, 99532, 364913, 729826, 1725033, 3450066, 5175099, 27235615, 52746197, 131002976, 471265707, 811528438, 2774848045, 4738167652, 567663097408
Offset: 1
Keywords
Examples
Pi/arctan(1/6) = 19.0228..., 6*Pi = 18.8495..., so 6 is a term. 113*t is here for t <= 17, because ceiling(Pi/arctan(1/(113*t))) = 355*t+1 and ceiling((113*t)*Pi) = 355*t.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..2259
- Jon E. Schoenfield, Magma program
- Wikipedia, Continued fraction
- Zhihu, A counting puzzle of colliding blocks which is related to Pi (in Chinese)
Crossrefs
Programs
-
Magma
// See Schoenfield link.
-
PARI
default(realprecision, 10000); isA332045(n) = ceil(Pi/atan(1/n))!=ceil(n*Pi)
Extensions
a(27)-a(32) from Jon E. Schoenfield, Feb 12 2020
a(33)-a(36) from Giovanni Resta, Feb 12 2020
a(37) from Jon E. Schoenfield, Feb 15 2020
Comments