cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332051 Number of compositions of 2n where the multiplicity of the first part equals n.

This page as a plain text file.
%I A332051 #22 Dec 20 2020 12:20:19
%S A332051 1,1,3,4,15,36,126,372,1239,3910,12848,41581,136578,447188,1473342,
%T A332051 4855704,16053831,53138244,176233968,585202262,1945964080,6478043121,
%U A332051 21588979877,72016891509,240452892570,803489258286,2686964354376,8991840800137,30110638705890
%N A332051 Number of compositions of 2n where the multiplicity of the first part equals n.
%H A332051 Alois P. Heinz, <a href="/A332051/b332051.txt">Table of n, a(n) for n = 0..1882</a>
%F A332051 a(n) = A331332(2n,n).
%F A332051 a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586487649733361214893... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.34930509632919368540449993196290415079... is the root of the equation 5 - 4*c^2 - 592*c^4 + 2368*c^6 = 0. - _Vaclav Kotesovec_, Feb 08 2020
%F A332051 Recurrence: 5*(n-1)*n*(2294*n^5 - 31267*n^4 + 168064*n^3 - 445121*n^2 + 580494*n - 297864)*a(n) = (n-1)*(29822*n^6 - 415647*n^5 + 2327634*n^4 - 6668807*n^3 + 10238782*n^2 - 7910608*n + 2368800)*a(n-1) + 2*(27528*n^7 - 434848*n^6 + 2851985*n^5 - 10024036*n^4 + 20278349*n^3 - 23438626*n^2 + 14189888*n - 3420000)*a(n-2) - 2*(41292*n^7 - 647684*n^6 + 4218357*n^5 - 14743832*n^4 + 29759871*n^3 - 34533464*n^2 + 21199620*n - 5259600)*a(n-3) + 2*(n-4)*(2*n - 7)*(2294*n^5 - 19797*n^4 + 65936*n^3 - 105591*n^2 + 80846*n - 23400)*a(n-4). - _Vaclav Kotesovec_, Feb 08 2020
%e A332051 a(0) = 1: the empty composition.
%e A332051 a(1) = 1: 2.
%e A332051 a(2) = 3: 22, 112, 121.
%e A332051 a(3) = 4: 222, 1113, 1131, 1311.
%e A332051 a(4) = 15: 2222, 11114, 11141, 11411, 14111, 111122, 111212, 111221, 112112, 112121, 112211, 121112, 121121, 121211, 122111.
%p A332051 b:= proc(n, i) option remember; `if`(n=0, x, add(expand(
%p A332051      `if`(i=j, x, 1)*b(n-j, `if`(n<i+j, 0, i))), j=1..n))
%p A332051     end:
%p A332051 a:= n-> `if`(n=0, 1, coeff(add(b(2*n-j, j), j=1..2*n), x, n)):
%p A332051 seq(a(n), n=0..35);
%t A332051 b[n_, i_] := b[n, i] = If[n == 0, x, Sum[Expand[If[i == j, x, 1] b[n - j, If[n < i + j, 0, i]]], {j, 1, n}]];
%t A332051 a[n_] := If[n == 0, 1, Coefficient[Sum[b[2 n - j, j], {j, 1, 2 n}], x, n]];
%t A332051 a /@ Range[0, 35] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ *)
%Y A332051 Cf. A232665, A232697, A255197, A331332.
%K A332051 nonn
%O A332051 0,3
%A A332051 _Alois P. Heinz_, Feb 06 2020