This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332052 #15 Mar 07 2024 12:25:20 %S A332052 1,2,4,8,15,28,54,104,198,380,736,1424,2756,5360,10456,20416,39944, %T A332052 78352,153952,302912,596976,1178304,2328544,4606848,9124448,18089920, %U A332052 35895552,71283968,141664832,281718528,560561024,1115994112,2222846080,4429381888,8829667840 %N A332052 Number of binary words of length n with an even number of occurrences of the subword 0101. %H A332052 Alois P. Heinz, <a href="/A332052/b332052.txt">Table of n, a(n) for n = 0..3322</a> %H A332052 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,8,-10,4). %F A332052 G.f.: (x^4-4*x^3+2*x^2-2*x+1)/((1-2*x)*(2*x^4-4*x^3+2*x^2-2*x+1)). %F A332052 a(n) = Sum_{k>=0} A118869(n,2*k). %e A332052 a(4) = 15 = 2^4 - 1: 0101 is not counted. %e A332052 a(5) = 28 = 2^5 - 4: 00101, 10101, 01010, 01011 are not counted. %p A332052 a:= n-> 2^n-(<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0> %p A332052 , <0|0|0|0|1>, <4|-10|8|-6|4>>^n)[1, 5]: %p A332052 seq(a(n), n=0..39); %t A332052 LinearRecurrence[{4,-6,8,-10,4},{1,2,4,8,15},50] (* _Harvey P. Dale_, Mar 07 2024 *) %Y A332052 Cf. A118869, A118870. %K A332052 nonn,easy %O A332052 0,2 %A A332052 _Alois P. Heinz_, Feb 06 2020