cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332060 a(n) = 3*a(n-1) + a(n-2) after initial values a(0..5) = (0, 1, 2, 3, 5, 13).

Original entry on oeis.org

0, 1, 2, 3, 5, 13, 44, 145, 479, 1582, 5225, 17257, 56996, 188245, 621731, 2053438, 6782045, 22399573, 73980764, 244341865, 807006359, 2665360942, 8803089185, 29074628497, 96026974676, 317155552525, 1047493632251, 3459636449278, 11426402980085
Offset: 0

Views

Author

M. F. Hasler, Mar 04 2020

Keywords

Comments

These numbers arise as borders of intervals [a(n), a(n+1)] = [b(k)=k, b(m)=m] with m := b(k) + b(k-1) after the "holes" between the borders have been filled according to b(k+1) = b(k) + b(m) and b(m-1) = b(k+1) + b(n) for any such interval of length m - k > 2, i.e., starting from k = 5, m = 13.
The initial terms correspond to intervals of length <= 2 with only 0 or 1 "holes" to fill: In the first case we have the same recursion rule as for the Fibonacci sequence, and when there's one hole (between 3 and 5) the next Fibonacci number b(k+1) = b(k) + b(m) = 3 + 5 = 8 gets filled in there, and the next border is m = b(k) + b(k-1) = 5 + 8 = 13. See Example for more.

Examples

			The initial a(0) is conventional. (One could also choose a(0) = 1 to have a(2) = a(1) + a(0) as for the next two terms, but this wouldn't correspond to b(m) = b(k) + b(k-1), either.)
We start with [a(1), a(2)] = [1, 2].
No gap or "hole" here to fill, so the next interval [a(2), a(3)] has upper bound a(3) = a(2) + 1 = 3, where 1 is the element just left to the right border a(2).
Again, no gap or hole to fill in [2, 3], so the next interval has upper bound a(4) = a(3) + 2 = 5, where 2 is the element just left to the right border a(3).
Now there's a hole in (3, 5), at position 4, which is filled with 3 + 5 = 8, so the next upper bound is a(5) = a(4) + 8 = 5 + 8 = 13: here the number 8 was the element left to the right border 5.
Now there are several holes in (5, 13). The leftmost one (position 6) is filled with 5 + 13 = 18, and the rightmost (position 12) is filled with 18 + 13 = 31. So the next interval [a(5), a(6)] has upper bound a(6) = a(5) + 31 = 44.
		

Crossrefs

Cf. A000045 (Fibonacci numbers F(n+1) = F(n) + F(n-1)); A006190, A052924, A006497 (a(n+1) = 3*a(n) + a(n-1)); A000129 (Pell numbers a(n+1) = 2*a(n) + a(n-1)).

Programs

  • PARI
    for(n=1+#a=[0,1,2,3,5,13],#a=Vec(a,30),a[n]=a[n-1]*3+a[n-2]);a \\ Remove initial 0 to get a[1] = 1 etc.
    apply( {A332060(n)=if(n>3,[5,13]*([0,1;1,3]^(n-4))[,1],n)}, [0..20])

Formula

G.f.: x*(1 - x - 4*x^2 - 6*x^3 - 5*x^4)/(1 - 3*x - x^2).