cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332065 Infinite square array where row n lists the integers whose n-th power is the sum of distinct n-th powers of positive integers; read by falling antidiagonals.

Original entry on oeis.org

3, 4, 5, 5, 7, 6, 6, 9, 9, 15, 7, 10, 12, 25, 12, 8, 11, 13, 27, 23, 25, 9, 12, 14, 29, 24, 28, 40, 10, 13, 15, 30, 28, 32, 43, 84, 11, 14, 16, 31, 29, 34, 44, 85, 47, 12, 15, 17, 33, 30, 35, 45, 86, 49, 63, 13, 16, 18, 35, 31, 36, 46, 87, 52, 64, 68
Offset: 1

Views

Author

M. F. Hasler, Mar 31 2020

Keywords

Comments

Each row contains all sufficiently large integers (Sprague). Sequences A001422, A001476, A046039, A194768, A194769, ... mention the largest number which can't be written as sum of distinct n-th powers for n = 2, 3, 4, 5, 6, ...; see also A001661. Sequence A332066 gives the number of positive integers not in row n.
All positive multiples of any T(n,k) appear later in that row (because if s^n = Sum_{x in S} x^n, then (k*s)^n = Sum_{x in k*S} x^n).

Examples

			The table reads: (Entries from where on T(n,k+1) = T(n,k)+1 are marked by *.)
   n | k=1    2    3    4    5    6    7    8    9   10   11   12   13  ...
  ---+---------------------------------------------------------------------
   1 |   3*   4    5    6    7    8    9   10   11   12   13   14   15  ...
   2 |   5    7    9*  10   11   12   13   14   15   16   17   18   19  ...
   3 |   6    9   12*  13   14   15   16   17   18   19   20   21   22  ...
   4 |  15   25   27   29   30   31   33   35   37   39   41   43   45* ...
   5 |  12   23   24   28*  29   30   31   32   33   34   35   36   37  ...
   6 |  25   28   32   34*  35   36   37   38   39   40   41   42   43  ...
   7 |  40   43*  44   45   46   47   48   49   50   51   52   53   54  ...
   8 |  84*  85   86   87   88   89   90   91   92   93   94   95   96  ...
   9 |  47   49   52*  53   54   55   56   57   58   59   60   61   62  ...
  10 |  63*  64   65   66   67   68   69   70   71   72   73   74   75  ...
  11 |  68   73*  74   75   76   77   78   79   80   81   82   83   84  ...
  ...| ...
Row 1: 3^1 = 2^1 + 1^1, 4^1 = 3^1 + 1^1, 5^1 = 4^1 + 1^1, 6^1 = 5^1 + 1^1, ...
Row 2: 5^2 = 4^2 + 3^2, 7^2 = 6^2 + 3^2 + 2^2, 9^2 = 8^2 + 4^2 + 1^2, ...
Row 3: 6^3 = 5^3 + 4^3 + 3^3, 9^3 = 8^3 + 6^3 + 1, 12^3 = 10^3 + 8^3 + 6^3, ...
Row 4: 15^4 = Sum {14, 9, 8, 6, 4}^4, 25^4 = Sum {21, 20, 12, 10, 8, 6, 2}^4, ...
See the link for other rows.
		

Crossrefs

Cf. A030052 (first column), A001661.
Cf. A009003 (hypotenuse numbers; subsequence of row 2).
Cf. A332066.

Programs

  • PARI
    M332065=Map(); A332065(n,m,r)={if(r, if( m<2^n||m>r^n*(r+n+1)\(n+1), m<2, r=min(sqrtnint(m,n),r), m==r^n || while( !A332065(n,m-r^n,r-=1) && (mA004736(n),n=A002260(n)]; mapisdefined(M332065,[n,m],&r), r, n<2, m+2, r=if(m>1,A332065(n,m-1),n+2); until(A332065(n, (r+=1)^n, r-1),); mapput(M332065,[n,m],r); r)} \\ Calls itself with nonzero (optional) 3rd argument to find by exhaustive search whether r can be written as sum of distinct powers <= m^n. (Comment added by M. F. Hasler, May 25 2020)

Formula

T(1,k) = 2 + k for all k. (Indeed, s^1 = (s-1)^1 + 1 and s-1 > 1 for s > 2.)
T(2,k) = 6 + k for all k >= 3. (Use s^2 = (s-1)^2 + 2*s-1 and A001422, A009003.)
T(3,k) = 9 + k for all k >= 3. (Use max A001476 = 12758 < 24^3.)
T(4,k) = 32 + k for all k >= 13. (Use max A046039 < 48^4.)
T(5,k) = 24 + k for all k >= 4. (Use max(N \ A194768) < 37^5.)
T(6,k) = 30 + k for all k >= 4. (Use max(N \ A194769) < 48^6.)
T(7,k) = 41 + k for all k >= 2.
T(9,k) = 49 + k for all k >= 3.

Extensions

More terms from M. F. Hasler, Jul 19 2020