A332065 Infinite square array where row n lists the integers whose n-th power is the sum of distinct n-th powers of positive integers; read by falling antidiagonals.
3, 4, 5, 5, 7, 6, 6, 9, 9, 15, 7, 10, 12, 25, 12, 8, 11, 13, 27, 23, 25, 9, 12, 14, 29, 24, 28, 40, 10, 13, 15, 30, 28, 32, 43, 84, 11, 14, 16, 31, 29, 34, 44, 85, 47, 12, 15, 17, 33, 30, 35, 45, 86, 49, 63, 13, 16, 18, 35, 31, 36, 46, 87, 52, 64, 68
Offset: 1
Examples
The table reads: (Entries from where on T(n,k+1) = T(n,k)+1 are marked by *.) n | k=1 2 3 4 5 6 7 8 9 10 11 12 13 ... ---+--------------------------------------------------------------------- 1 | 3* 4 5 6 7 8 9 10 11 12 13 14 15 ... 2 | 5 7 9* 10 11 12 13 14 15 16 17 18 19 ... 3 | 6 9 12* 13 14 15 16 17 18 19 20 21 22 ... 4 | 15 25 27 29 30 31 33 35 37 39 41 43 45* ... 5 | 12 23 24 28* 29 30 31 32 33 34 35 36 37 ... 6 | 25 28 32 34* 35 36 37 38 39 40 41 42 43 ... 7 | 40 43* 44 45 46 47 48 49 50 51 52 53 54 ... 8 | 84* 85 86 87 88 89 90 91 92 93 94 95 96 ... 9 | 47 49 52* 53 54 55 56 57 58 59 60 61 62 ... 10 | 63* 64 65 66 67 68 69 70 71 72 73 74 75 ... 11 | 68 73* 74 75 76 77 78 79 80 81 82 83 84 ... ...| ... Row 1: 3^1 = 2^1 + 1^1, 4^1 = 3^1 + 1^1, 5^1 = 4^1 + 1^1, 6^1 = 5^1 + 1^1, ... Row 2: 5^2 = 4^2 + 3^2, 7^2 = 6^2 + 3^2 + 2^2, 9^2 = 8^2 + 4^2 + 1^2, ... Row 3: 6^3 = 5^3 + 4^3 + 3^3, 9^3 = 8^3 + 6^3 + 1, 12^3 = 10^3 + 8^3 + 6^3, ... Row 4: 15^4 = Sum {14, 9, 8, 6, 4}^4, 25^4 = Sum {21, 20, 12, 10, 8, 6, 2}^4, ... See the link for other rows.
Links
- R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z. 51 (1948) 466-468.
- Various authors, Decomposition of T(n,1)^n = A030052(n)^n.
Crossrefs
Programs
-
PARI
M332065=Map(); A332065(n,m,r)={if(r, if( m<2^n||m>r^n*(r+n+1)\(n+1), m<2, r=min(sqrtnint(m,n),r), m==r^n || while( !A332065(n,m-r^n,r-=1) && (m
A004736(n),n=A002260(n)]; mapisdefined(M332065,[n,m],&r), r, n<2, m+2, r=if(m>1,A332065(n,m-1),n+2); until(A332065(n, (r+=1)^n, r-1),); mapput(M332065,[n,m],r); r)} \\ Calls itself with nonzero (optional) 3rd argument to find by exhaustive search whether r can be written as sum of distinct powers <= m^n. (Comment added by M. F. Hasler, May 25 2020)
Formula
T(1,k) = 2 + k for all k. (Indeed, s^1 = (s-1)^1 + 1 and s-1 > 1 for s > 2.)
T(3,k) = 9 + k for all k >= 3. (Use max A001476 = 12758 < 24^3.)
T(4,k) = 32 + k for all k >= 13. (Use max A046039 < 48^4.)
T(5,k) = 24 + k for all k >= 4. (Use max(N \ A194768) < 37^5.)
T(6,k) = 30 + k for all k >= 4. (Use max(N \ A194769) < 48^6.)
T(7,k) = 41 + k for all k >= 2.
T(9,k) = 49 + k for all k >= 3.
Extensions
More terms from M. F. Hasler, Jul 19 2020
Comments