A332082 a(n) = Sum_{1 <= m <= n} Sum_{1 <= k <= n+1-m} m*R(k,n+1), where R(k,b) = (b^k - 1)/(b - 1) is the base-b repunit of length k.
0, 1, 7, 42, 295, 2675, 31122, 447188, 7661370, 152415765, 3452271185, 87693358654, 2468455488681, 76256200336407, 2564715882332660, 93281313241869480, 3647955866777821668, 152635100350763019705, 6803550294289868214315, 321844061970058547739730, 16103630469426364324556635
Offset: 0
Examples
a(2) = 2 + 1 + 11[3] = 3 + 4 = 7. a(3) = 3 + 2 + 22[4] + 1 + 11[4] + 111[4] = 6 + 15 + 21 = 42. a(4) = 4 + 3 + 33[5] + 2 + 22[5] + 222[5] + 1 + 11[5] + 111[5] + 1111[5] = 10 + 36 + 93 + 156 = 295.
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[(n + 1 - m)*((n + 1)*((n + 1)^m - 1) - m*n)/n^2, {m, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Aug 24 2020 *)
-
PARI
apply( {A332082(n)=sum(m=1,n,(n+1-m)*((n+1)*((n+1)^m-1)-m*n)\n^2)}, [0..20])
Comments