cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332085 Number of ordered pairs of divisors of n, (d1,d2), such that d1 is prime and d1 <= d2.

This page as a plain text file.
%I A332085 #24 May 30 2025 15:48:03
%S A332085 0,1,1,2,1,5,1,3,2,5,1,9,1,5,5,4,1,9,1,8,5,5,1,13,2,5,3,8,1,18,1,5,5,
%T A332085 5,5,15,1,5,5,12,1,17,1,8,9,5,1,17,2,9,5,8,1,13,5,12,5,5,1,29,1,5,9,6,
%U A332085 5,17,1,8,5,18,1,21,1,5,9,8,5,17,1,16,4,5,1,28,5,5,5,11,1,30
%N A332085 Number of ordered pairs of divisors of n, (d1,d2), such that d1 is prime and d1 <= d2.
%F A332085 a(n) = Sum_{d1|n, d2|n, d1 is prime, d1 <= d2} 1.
%F A332085 a(n) = A337320(n) + omega(n).
%F A332085 a(n) = Sum_{p|n, p prime} A135539(n,p). - _Ridouane Oudra_, May 24 2025
%F A332085 a(n) = A248577(n) - A337322(n). - _Ridouane Oudra_, May 30 2025
%e A332085 a(7) = 1; There are two divisors of 7: {1,7}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (7,7). So a(7) = 1.
%e A332085 a(8) = 3; There are 4 divisors of 8: {1,2,4,8}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,4) and (2,8). So a(8) = 3.
%e A332085 a(9) = 2; There are three divisors of 9: {1,3,9}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (3,3) and (3,9). So a(9) = 2.
%e A332085 a(10) = 5; There are four divisors of 10: {1,2,5,10}. If we list the ordered pairs of divisors of n, (d1,d2) where d1 is prime and d1 <= d2, we get (2,2), (2,5), (2,10), (5,5) and (5,10). So a(10) = 5.
%t A332085 Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
%o A332085 (PARI) row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ A135539
%o A332085 a(n) = my(v=row(n)); sumdiv(n, d, if (isprime(d), v[d])); \\ _Michel Marcus_, May 24 2025
%Y A332085 Cf. A001221 (omega), A135539, A337228, A337320, A337322, A248577.
%K A332085 nonn
%O A332085 1,4
%A A332085 _Wesley Ivan Hurt_, Aug 22 2020