This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332086 #27 Sep 11 2020 11:24:40 %S A332086 1,1,1,1,1,2,2,1,2,2,2,3,3,2,3,3,4,4,4,4,3,4,4,6,5,5,4,4,4,4,6,6,6,6, %T A332086 7,6,7,8,7,7,6,6,8,7,8,7,8,10,9,9,10,9,9,8,9,10,9,8,8,8,7,9,10,10,9, %U A332086 10,11,11,11,11,11,11,12,12,12,12,13,13,13,13 %N A332086 a(n) = pi(prime(n) + n) - n, where pi is the prime counting function. %C A332086 This sequence is related to a theorem of Lu and Deng (see LINKS): “The prime gap of a prime number is less than or equal to the prime count of the prime number”, which is equivalent to “There exists at least one prime number between p and p+pi(p)+1”, or pi(p+pi(p)) - pi(p) > 1, where pi is prime counting function. The n-th term of the sequence, a(n), is the number of prime number between the n-th prime number p_n and p_n + pi(p_n) + 1. According to the theorem, a(n) >= 1. %H A332086 Robert Israel, <a href="/A332086/b332086.txt">Table of n, a(n) for n = 1..10000</a> %H A332086 Ya-Ping Lu and Shu-Fang Deng, <a href="https://arxiv.org/abs/2007.15282">An upper bound for the prime gap</a>, arXiv:2007.15282 [math.GM], 2020. %F A332086 a(n) = pi(prime(n) + n) - n. %F A332086 a(n) = A000720(A014688(n)) - n. - _Michel Marcus_, Aug 23 2020 %e A332086 a(1) = pi(p_1 + 1) - 1 = pi(2 + 1) - 1 = 2 - 1 = 1; %e A332086 a(2) = pi(p_2 + 2) - 2 = pi(3 + 2) - 2 = 3 - 2 = 1; %e A332086 a(6) = pi(p_6 + 6) - 6 = pi(13 + 6) - 6 = 8 - 6 = 2; %e A332086 a(80) = pi(p_80 + 80) - 80 = pi(409 + 80) - 80 = 93 - 80 = 13. %p A332086 f:= n -> numtheory:-pi(ithprime(n)+n)-n: %p A332086 map(f, [$1..100]); # _Robert Israel_, Sep 08 2020 %t A332086 a[n_] := PrimePi[Prime[n] + n] - n; Array[a, 100] (* _Amiram Eldar_, Aug 23 2020 *) %o A332086 (Python) %o A332086 from sympy import prime, primepi %o A332086 for n in range(1, 1001): %o A332086 a = primepi(prime(n) + n) - n %o A332086 print(a) %o A332086 (PARI) a(n) = primepi(prime(n) + n) - n; \\ _Michel Marcus_, Aug 23 2020 %Y A332086 Cf. A000720 (pi), A014688 (prime(n)+n). %K A332086 nonn %O A332086 1,6 %A A332086 _Ya-Ping Lu_, Aug 22 2020 %E A332086 Name edited by _Michel Marcus_, Sep 02 2020