cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332091 Decimal expansion of the arithmetic-geometric mean AGM(1, 1, 2) defined as limit of the sequence x(n+1) = P(x(n)) with x(0) = (1, 1, 2) and P(a,b,c) = ((a + b + c)/3, sqrt((ab + ac + bc)/3), (abc)^(1/3)).

Original entry on oeis.org

1, 2, 9, 4, 5, 7, 5, 1, 0, 8, 1, 1, 6, 6, 1, 2, 6, 4, 3, 4, 4, 8, 6, 4, 3, 4, 9, 8, 2, 1, 0, 0, 3, 5, 3, 6, 7, 4, 0, 3, 7, 9, 7, 2, 7, 2, 1, 5, 6, 4, 2, 4, 5, 8, 6, 8, 0, 8, 6, 6, 4, 1, 7, 2, 3, 9, 5, 6, 5, 9, 8, 7, 4, 8, 5, 8, 9, 6, 2, 0, 5, 9, 7, 5, 6, 5, 9, 8, 7, 6, 7, 6, 7, 1, 4, 2, 5, 6, 4, 7, 4
Offset: 1

Views

Author

M. F. Hasler, Sep 18 2020

Keywords

Comments

See the main entry A332093 for more information on the multi-argument AGM(...) used here. One main motivation for these entries is to find exact formulas for this function which seems not yet well studied in the literature, or at least for particular values like this one, A332092 = AGM(1,2,2) and A332093 = AGM(1,2,3). Any references to possibly existing works using this definition would be welcome.
Other 3-argument generalizations of the AGM have been proposed (cf. A332093) which will give different values for AGM(1,1,2).

Examples

			1.294575108116612643448643498210035367403797272156424586808664172...
		

Crossrefs

Cf. A332092 (AGM(1,2,2)), A332093 (AGM(1,2,3)).
Cf. other sequences related to the AGM (of two numbers): A061979, A080504, A090852 ff, A127758 ff.

Programs

  • PARI
    f(k,x,S)={forvec(i=vector(k,i,[1,#x]), S+=vecprod(vecextract(x,i)),2); S/binomial(#x,k)} \\ normalized k-th elementary symmetric polynomial in x
    AGM(x)={until(x[1]<=x[#x],x=[sqrtn(f(k,x),k)|k<-[1..#x]]);vecsum(x)/#x}
    default(realprecision,100);digits(AGM([1,1,2])\.1^100)