A332091 Decimal expansion of the arithmetic-geometric mean AGM(1, 1, 2) defined as limit of the sequence x(n+1) = P(x(n)) with x(0) = (1, 1, 2) and P(a,b,c) = ((a + b + c)/3, sqrt((ab + ac + bc)/3), (abc)^(1/3)).
1, 2, 9, 4, 5, 7, 5, 1, 0, 8, 1, 1, 6, 6, 1, 2, 6, 4, 3, 4, 4, 8, 6, 4, 3, 4, 9, 8, 2, 1, 0, 0, 3, 5, 3, 6, 7, 4, 0, 3, 7, 9, 7, 2, 7, 2, 1, 5, 6, 4, 2, 4, 5, 8, 6, 8, 0, 8, 6, 6, 4, 1, 7, 2, 3, 9, 5, 6, 5, 9, 8, 7, 4, 8, 5, 8, 9, 6, 2, 0, 5, 9, 7, 5, 6, 5, 9, 8, 7, 6, 7, 6, 7, 1, 4, 2, 5, 6, 4, 7, 4
Offset: 1
Examples
1.294575108116612643448643498210035367403797272156424586808664172...
Links
- Vladimir Reshetnikov, Arithmetic-geometric mean of 3 numbers, math.StackExchange.com, May 22 2016.
- User Mathlover, To find the limit of three terms mean iteration, math.StackExchange.com, Jul 12 2013.
- Wikipedia, Arithmetic-geometric mean, created Jan 2, 2002.
Crossrefs
Programs
-
PARI
f(k,x,S)={forvec(i=vector(k,i,[1,#x]), S+=vecprod(vecextract(x,i)),2); S/binomial(#x,k)} \\ normalized k-th elementary symmetric polynomial in x AGM(x)={until(x[1]<=x[#x],x=[sqrtn(f(k,x),k)|k<-[1..#x]]);vecsum(x)/#x} default(realprecision,100);digits(AGM([1,1,2])\.1^100)
Comments