A332093 Decimal expansion of Arithmetic-geometric mean AGM(1, 2, 3) defined as limit of the sequence x(n+1) = P(x(n)) with x(0) = (1, 2, 3) and P(a,b,c) = ((a + b + c)/3, sqrt((ab + ac + bc)/3), (abc)^(1/3)).
1, 9, 0, 9, 9, 2, 6, 2, 3, 3, 5, 4, 0, 8, 1, 5, 3, 2, 3, 7, 2, 2, 6, 7, 5, 1, 0, 9, 7, 8, 7, 5, 3, 3, 5, 5, 9, 1, 3, 5, 6, 2, 4, 4, 0, 8, 0, 2, 7, 2, 8, 4, 0, 5, 8, 3, 3, 8, 8, 5, 5, 5, 6, 8, 6, 6, 0, 2, 6, 6, 2, 8, 7, 1, 3, 2, 4, 5, 7, 9, 5, 1, 2, 7, 9, 9, 6, 1, 6, 7, 6, 1, 7, 5, 6, 4, 9, 8, 3, 2, 6
Offset: 1
Examples
1.90992623354081532372267510978753355913562440802728405833885556866...
Links
- Brad Klee, Iterated averaging of triples, math-fun list (available for subscribers), Sep 18 2020.
- User Mathlover, To find the limit of three terms mean iteration, math.StackExchange.com, Jul 12 2013.
- Vladimir Reshetnikov, Arithmetic-geometric mean of 3 numbers, math.StackExchange.com, May 22 2016.
- Wikipedia, Arithmetic-geometric mean, created Jan 2, 2002.
- Wikipedia, Elementary symmetric polynomial, created Jan 28, 2005.
Crossrefs
Programs
-
PARI
f(k,x,S)={forvec(i=vector(k,i,[1,#x]), S+=vecprod(vecextract(x,i)),2); S/binomial(#x,k)} \\ normalized k-th elementary symmetric polynomial in x AGM(x)={until(x[1]<=x[#x],x=[sqrtn(f(k,x),k)|k<-[1..#x]]);vecsum(x)/#x} default(realprecision,100);digits(AGM([1,2,3])\.1^100)
Comments