A332096 Irregular table where T(n,m) = min_{A subset {1..m-1}} |m^n - Sum_{x in A} x^n|, for 1 <= m <= A332098(n) = largest m for which this is nonzero.
1, 1, 1, 3, 4, 2, 0, 1, 0, 1, 1, 7, 18, 28, 25, 0, 1, 8, 0, 7, 1, 1, 15, 64, 158, 271, 317, 126, 45, 17, 59, 14, 2, 15, 3, 0, 2, 1, 2, 1, 2, 2, 2, 1, 2, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 31, 210, 748, 1825, 3351, 4606, 3760, 398, 131, 299, 0, 318, 0, 8
Offset: 1
Keywords
Examples
The table reads: n\ m=1 2 3 4 5 6 7 8 9 10 11 12 13 ----+-------------------------------------------------------------------------- 1 | 1 1 (A332098(1) = 2.) 2 | 1 3 4 2 0 1 0 1 (A332098(2) = 8.) 3 | 1 7 18 28 25 0 1 8 0 7 1 4 | 1 15 64 158 271 317 126 45 17 59 14 2 15 3 0 ... 5 | 1 31 210 748 1825 3351 4606 3760 398 131 299 0 318 0 8 ... The first column is all ones (A000012), since {1..m-1} = {} for m = 1. The second column is 2^n - 1 = A000225 \ {0}, since {1..m-1} = {1} for m = 2. The third column is 3^n - 2^n - 1 = |A083321(n)| for n > 1.
Links
- R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z. 51 (1948) 466-468.
Programs
-
PARI
A332096(n,m,r=0)={if(r, (m<2||r<2^(n-1)) && return(r-1); my(E, t=1); while(m^n>=r, E=m--); E=abs(r-(m+!!E)^n); for(a=2,m, if(r
=m && return(min(E,r-t)); while(m>=t && E, E=min(self()(n,m-1,r-m^n),E); E && E=min(self()(n,m-=1,r),E)); E, m < n/log(2)+1.5, m^n-sum(x=1,m-1,x^n), self()(n,m-1,m^n))}
Comments