This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332099 #13 Jan 04 2024 21:40:09 %S A332099 1,1,1,0,3,1,0,4,7,1,0,2,18,15,1,0,0,28,64,31,1,0,1,25,158,210,63,1,0, %T A332099 0,0,271,748,664,127,1,0,1,1,317,1825,3302,2058,255,1,0,0,8,126,3351, %U A332099 10735,14068,6304,511,1,0,2,0,45,4606,26141,59425,58718,19170,1023,1,0,0,19,47,3760,50478,183111,318271,241948,58024,2047,1 %N A332099 Square array T(n,k) = k^n - Sum_{0 < i < k} e(i)*(k-i)^n where e(i) = 1 if the partial sum up to this term would remain <= k^n, or 0 else; n, k >= 1; read by falling antidiagonals. %C A332099 To compute T(n,k), start from k^n, then subtract (progressively strictly) smaller n-th powers whenever possible. %C A332099 Since we subtract the smaller n-th powers in a greedy way, T(n,k) may be nonzero even if k^n is a sum of smaller n-th powers: cf. rows of A332065 for these k. %F A332099 T(n,k) > 0 for k < A030052(n), and T(n,k) = 0 for k = A030052(n). %F A332099 T(n,k) = k^n - Sum_{0 < m < k} m^k for k < A332101(n). %F A332099 T(n,1) = 1 = A000012(n); T(n,2) = 2^n - 1 = A000225(n); %F A332099 T(n,3) = 3^n - 2^n - 1 = |A083321(n)|. %e A332099 The square array starts %e A332099 n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A332099 --+---------------------------------------------------------------------------- %e A332099 1 | 1 1 0 0 0 0 0 0 0 0 0 0 0 %e A332099 2 | 1 3 4 2 0 1 0 1 0 2 0 2 0 %e A332099 3 | 1 7 18 28 25 0 1 8 0 19 15 18 0 %e A332099 4 | 1 15 64 158 271 317 126 45 47 59 191 61 285 %e A332099 5 | 1 31 210 748 1825 3351 4606 3760 398 131 702 0 1229 %e A332099 6 | 1 63 664 3302 10735 26141 50478 77324 84477 21595 55300 29603 2093 %e A332099 (...) %e A332099 Columns 1, 2, 3: A000012, A000225, |A083321|, cf. FORMULA. %e A332099 We have T(2,10) = 10^2 - 9^2 - 4^2 - 1 = 2, because we first have to subtract 9^2 = 81, even though 10 is in row 2 of A332065 since 10^2 - 8^2 - 6^2 = 0. %o A332099 (PARI) A332099(n,k,t=k^n)={while(k&&t,t-=(k=min(sqrtnint(t,n),k-1))^n);t} %Y A332099 Cf. A030052 (least k such that k^n = sum of distinct n-th powers). %Y A332099 Cf. A332065 (all k such that k^n is a sum of distinct n-th powers). %Y A332099 Cf. A332101 (least k such that k^n <= sum of all smaller n-th powers). %K A332099 nonn,tabl %O A332099 1,5 %A A332099 _M. F. Hasler_, Apr 19 2020