cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332101 Least m such that m^n <= Sum_{k

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97
Offset: 0

Views

Author

M. F. Hasler, Apr 14 2020

Keywords

Comments

In a list (1^n, 2^n, 3^n, ...) (rows of table A051128 or A051129), a(n) is the index of the first term less than or equal to the sum of all earlier terms, cf. example.
Obviously a lower bound for any s solution to s^n = Sum_{x in S} x^n, S subset of {1, ..., s-1}, cf. A030052.

Examples

			For n = 0, m^0 > Sum_{0 < k < m} k^0 = 0 for m = 0, 1 (empty sums), but 2^0 = Sum_{0 < k < 2} k^0 = 1, so a(0) = 2.
For n = 1, 1^1 > Sum_{0 < k < 1} k^1 = 0 (empty sum) and 2^1 > Sum_{0 < k < 2} k^1 = 1, but 3^1 <= Sum_{0 < k < 3} k^1 = 1 + 2, so a(1) = 3.
To find a(n) one can add up terms in row n of the table k^n until the sum equals or exceeds the next term, whose column number k is then a(n):
  n |k: 1  2   3   4    5    6          Comment
  --+---------------------------------------------------------------
  1 |  1   2   3                  1 < 2 but 1 + 2 >= 3, so a(1) = 3.
  2 |  1   4   9  16   25         1 + 4 + 9 + 16 > 25, and a(2) = 5.
  3 |  1   8  27  64  125  216    1 + 8 + 27 + 64 + 125 > 216: a(3) = 6.
		

Crossrefs

Cf. A078607, A332097 (maximum of E(s), cf comments), A030052 (least k such that k^n = sum of distinct n-th powers), A332065 (all k such that k^n is a sum of distinct n-th powers).

Programs

  • Mathematica
    Table[Block[{m = 1, s = 0}, While[m^n > s, s = s + m^n; m++]; m], {n, 0, 66}] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    apply( A332101(n,s)=for(m=1,oo, s
    				

Formula

a(n) = round(n / log(2)) + 2. (Conjectured; verified up to 10^4, in particular for 3525/log(2) = 5085.500019... and 7844/log(2) ~ 11316.49990...)
a(n) = A078607(n) + 2 for almost all n > 1. (n = 777451915729368 might be an exception to this equality or the above one.) - M. F. Hasler, May 08 2020