This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332112 #8 Feb 11 2020 07:55:48 %S A332112 2,121,11211,1112111,111121111,11111211111,1111112111111, %T A332112 111111121111111,11111111211111111,1111111112111111111, %U A332112 111111111121111111111,11111111111211111111111,1111111111112111111111111,111111111111121111111111111,11111111111111211111111111111,1111111111111112111111111111111 %N A332112 a(n) = (10^(2n+1)-1)/9 + 10^n. %C A332112 a(0) = 2 is the only prime in this sequence, since all other terms factor as a(n) = R(n+1)*(10^n+1), where R(n) = (10^n-1)/9. %H A332112 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332112 a(n) = A138148(n) + 2*10^n = A002275(2n+1) + 10^n. %F A332112 G.f.: (2 - 101*x)/((1 - x)(1 - 10*x)(1 - 100*x)). %F A332112 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %p A332112 A332112 := n -> (10^(2*n+1)-1)/9+10^n; %t A332112 Array[ (10^(2 # + 1)-1)/9 + 10^# &, 15, 0] %o A332112 (PARI) apply( {A332112(n)=10^(n*2+1)\9*1+10^n}, [0..15]) %o A332112 (Python) def A332112(n): return 10**(n*2+1)//9+10**n %Y A332112 Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n). %Y A332112 Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes). %Y A332112 Cf. A332132 .. A332192 (variants with different repeated digit 3, ..., 9). %Y A332112 Cf. A332113 .. A332119 (variants with different middle digit 3, ..., 9). %Y A332112 Cf. A331860 & A331861 (indices of primes in non-palindromic variants). %K A332112 nonn,base,easy %O A332112 0,1 %A A332112 _M. F. Hasler_, Feb 09 2020