This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332128 #9 Feb 11 2020 08:10:55 %S A332128 8,282,22822,2228222,222282222,22222822222,2222228222222, %T A332128 222222282222222,22222222822222222,2222222228222222222, %U A332128 222222222282222222222,22222222222822222222222,2222222222228222222222222,222222222222282222222222222,22222222222222822222222222222,2222222222222228222222222222222 %N A332128 a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n. %H A332128 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332128 a(n) = 2*A138148(n) + 8*10^n = A002276(2n+1) + 6*10^n = 2*A332114(n). %F A332128 G.f.: (8 - 606*x + 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)). %F A332128 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %p A332128 A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n; %t A332128 Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0] %o A332128 (PARI) apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15]) %o A332128 (Python) def A332128(n): return 10**(n*2+1)//9*2+6*10**n %Y A332128 Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n). %Y A332128 Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes). %Y A332128 Cf. A332118 .. A332178, A181965 (variants with different repeated digit 1, ..., 9). %Y A332128 Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9). %K A332128 nonn,base,easy %O A332128 0,1 %A A332128 _M. F. Hasler_, Feb 09 2020