This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332134 #7 Feb 11 2020 08:05:29 %S A332134 4,343,33433,3334333,333343333,33333433333,3333334333333, %T A332134 333333343333333,33333333433333333,3333333334333333333, %U A332134 333333333343333333333,33333333333433333333333,3333333333334333333333333,333333333333343333333333333,33333333333333433333333333333,3333333333333334333333333333333 %N A332134 a(n) = (10^(2n+1)-1)/3 + 10^n. %C A332134 There are no primes in this sequence because a(n) = round(n*2/3)*(5*10^n-1). %H A332134 Brady Haran and Simon Pampena, <a href="https://youtu.be/HPfAnX5blO0">Glitch Primes and Cyclops Numbers</a>, Numberphile video (2015). %H A332134 Patrick De Geest, <a href="http://www.worldofnumbers.com/wing.htm#pwp343">Palindromic Wing Primes: (3)4(3)</a>, updated: June 25, 2017. %H A332134 Makoto Kamada, <a href="https://stdkmd.net/nrr/3/33433.htm">Factorization of 33...33433...33</a>, updated Dec 11 2018. %H A332134 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332134 a(n) = 3*A138148(n) + 4*10^n = A002277(2n+1) + 10^n. %F A332134 G.f.: (4 - 101*x - 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)). %F A332134 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %p A332134 A332134 := n -> (10^(2*n+1)-1)/3+10^n; %t A332134 Array[ (10^(2 # + 1)-1)/3 + 10^# &, 15, 0] %o A332134 (PARI) apply( {A332134(n)=10^(n*2+1)\3+10^n}, [0..15]) %o A332134 (Python) def A332134(n): return 10**(n*2+1)//3+10**n %Y A332134 Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n). %Y A332134 Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes). %Y A332134 Cf. A332124 .. A332194 (variants with different repeated digit 2, ..., 9). %Y A332134 Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9). %K A332134 nonn,base,easy %O A332134 0,1 %A A332134 _M. F. Hasler_, Feb 09 2020