This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332135 #10 Sep 25 2024 09:54:53 %S A332135 5,353,33533,3335333,333353333,33333533333,3333335333333, %T A332135 333333353333333,33333333533333333,3333333335333333333, %U A332135 333333333353333333333,33333333333533333333333,3333333333335333333333333,333333333333353333333333333,33333333333333533333333333333,3333333333333335333333333333333 %N A332135 a(n) = (10^(2n+1)-1)/3 + 2*10^n. %C A332135 See A183175 = {1, 2, 17, 79, 118, 162, 177, ...} for the indices of primes. %H A332135 Brady Haran and Simon Pampena, <a href="https://youtu.be/HPfAnX5blO0">Glitch Primes and Cyclops Numbers</a>, Numberphile video (2015). %H A332135 Patrick De Geest, <a href="http://www.worldofnumbers.com/wing.htm#pwp353">Palindromic Wing Primes: (3)5(3)</a>, updated: June 25, 2017. %H A332135 Makoto Kamada, <a href="https://stdkmd.net/nrr/3/33533.htm">Factorization of 33...33533...33</a>, updated Dec 11 2018. %H A332135 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332135 a(n) = 3*A138148(n) + 5*10^n = A002277(2n+1) + 2*10^n. %F A332135 G.f.: (5 - 202*x - 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)). %F A332135 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %F A332135 E.g.f.: exp(x)*(10*exp(99*x) + 6*exp(9*x) - 1)/3. - _Stefano Spezia_, Sep 24 2024 %p A332135 A332135 := n -> (10^(2*n+1)-1)/3+2*10^n; %t A332135 Array[ (10^(2 # + 1)-1)/3 + 2*10^# &, 15, 0] %o A332135 (PARI) apply( {A332135(n)=10^(n*2+1)\3+2*10^n}, [0..15]) %o A332135 (Python) def A332135(n): return 10**(n*2+1)//3+2*10**n %Y A332135 Cf. (A077784-1)/2 = A183175: indices of primes. %Y A332135 Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n). %Y A332135 Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes). %Y A332135 Cf. A332125 .. A332195 (variants with different repeated digit 2, ..., 9). %Y A332135 Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9). %K A332135 nonn,base,easy %O A332135 0,1 %A A332135 _M. F. Hasler_, Feb 09 2020