This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332154 #10 Mar 09 2025 18:04:16 %S A332154 4,545,55455,5554555,555545555,55555455555,5555554555555, %T A332154 555555545555555,55555555455555555,5555555554555555555, %U A332154 555555555545555555555,55555555555455555555555,5555555555554555555555555,555555555555545555555555555,55555555555555455555555555555,5555555555555554555555555555555 %N A332154 a(n) = 5*(10^(2*n+1)-1)/9 - 10^n. %H A332154 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332154 a(n) = 5*A138148(n) + 4*10^n = A002279(2n+1) - 10^n. %F A332154 G.f.: (4 + 101*x - 600*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)). %F A332154 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %p A332154 A332154 := n -> 5*(10^(2*n+1)-1)/9-10^n; %t A332154 Array[5 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0] %t A332154 LinearRecurrence[{111,-1110,1000},{4,545,55455},20] (* or *) Table[FromDigits[Join[PadRight[{},n,5],{4},PadRight[{},n,5]]],{n,0,20}] (* _Harvey P. Dale_, Mar 09 2025 *) %o A332154 (PARI) apply( {A332154(n)=10^(n*2+1)\9*5-10^n}, [0..15]) %o A332154 (Python) def A332154(n): return 10**(n*2+1)//9*5-10**n %Y A332154 Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n). %Y A332154 Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes). %Y A332154 Cf. A332114 .. A332194 (variants with different repeated digit 1, ..., 9). %Y A332154 Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9). %K A332154 nonn,base,easy %O A332154 0,1 %A A332154 _M. F. Hasler_, Feb 09 2020