This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332179 #6 Feb 11 2020 08:26:50 %S A332179 9,797,77977,7779777,777797777,77777977777,7777779777777, %T A332179 777777797777777,77777777977777777,7777777779777777777, %U A332179 777777777797777777777,77777777777977777777777,7777777777779777777777777,777777777777797777777777777,77777777777777977777777777777,7777777777777779777777777777777 %N A332179 a(n) = 7*(10^(2n+1)-1)/9 + 2*10^n. %C A332179 See A183183 = {1, 2, 8, 19, 20, 212, 280, ...} for the indices of primes. %H A332179 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332179 a(n) = 7*A138148(n) + 9*10^n. %F A332179 G.f.: (9 - 202*x - 500*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)). %F A332179 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %p A332179 A332179 := n -> 7*(10^(n*2+1)-1)/9 + 2*10^n; %t A332179 Array[7 (10^(2 # + 1) - 1)/9 + 2*10^# &, 15, 0] %o A332179 (PARI) apply( {A332179(n)=10^(n*2+1)\9*7+2*10^n}, [0..15]) %o A332179 (Python) def A332179(n): return 10**(n*2+1)//9*7+2*10^n %Y A332179 Cf. A138148 (cyclops numbers with binary digits only). %Y A332179 Cf. (A077796-1)/2 = A183183: indices of primes. %Y A332179 Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n). %Y A332179 Cf. A332171 .. A332178 (variants with different middle digit 1, ..., 8). %K A332179 nonn,base,easy %O A332179 0,1 %A A332179 _M. F. Hasler_, Feb 08 2020