This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332192 #13 Nov 07 2022 12:52:34 %S A332192 2,929,99299,9992999,999929999,99999299999,9999992999999, %T A332192 999999929999999,99999999299999999,9999999992999999999, %U A332192 999999999929999999999,99999999999299999999999,9999999999992999999999999,999999999999929999999999999,99999999999999299999999999999,9999999999999992999999999999999 %N A332192 a(n) = 10^(2n+1) - 1 - 7*10^n. %C A332192 See A115073 = {1, 8, 9, 352, 530, 697, ...} for the indices of primes. %H A332192 Patrick De Geest, <a href="http://www.worldofnumbers.com/wing.htm#pwp929">Palindromic Wing Primes: (9)2(9)</a>, updated: June 25, 2017. %H A332192 Makoto Kamada, <a href="https://stdkmd.net/nrr/9/99299.htm">Factorization of 99...99299...99</a>, updated Dec 11 2018. %H A332192 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A332192 a(n) = 9*A138148(n) + 2*10^n = A002283(2n+1) - 7*10^n. %F A332192 G.f.: (2 + 707*x - 1600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)). %F A332192 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. %p A332192 A332192 := n -> 10^(n*2+1)-1-7*10^n; %t A332192 Array[ 10^(2 # +1) -1 -7*10^# &, 15, 0] %t A332192 LinearRecurrence[{111,-1110,1000},{2,929,99299},20] (* _Harvey P. Dale_, Nov 07 2022 *) %o A332192 (PARI) apply( {A332192(n)=10^(n*2+1)-1-7*10^n}, [0..15]) %o A332192 (Python) def A332192(n): return 10**(n*2+1)-1-7*10^n %Y A332192 Cf. (A077778-1)/2 = A115073: indices of primes. %Y A332192 Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n). %Y A332192 Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes). %Y A332192 Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8). %Y A332192 Cf. A332112 .. A332182 (variants with different repeated digit 1, ..., 8). %K A332192 nonn,base,easy %O A332192 0,1 %A A332192 _M. F. Hasler_, Feb 08 2020