cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332199 Expansion of Product_{i>=1, j>=1} 1/(1 - i*x^(i*j)).

This page as a plain text file.
%I A332199 #21 Aug 23 2020 10:14:47
%S A332199 1,1,4,8,22,40,101,183,412,765,1586,2899,5834,10484,20199,36246,67758,
%T A332199 119837,219661,384200,690164,1197423,2114105,3632088,6332797,10779478,
%U A332199 18555115,31354932,53385037,89494901,150983344,251284829,420218575,694947117,1152915743,1894656801
%N A332199 Expansion of Product_{i>=1, j>=1} 1/(1 - i*x^(i*j)).
%H A332199 Seiichi Manyama, <a href="/A332199/b332199.txt">Table of n, a(n) for n = 0..1000</a>
%F A332199 G.f.: Product_{k>0} f(q^k) where f(q) = Product_{i>=1} 1/(1 - i*q^i).
%F A332199 G.f.: Product_{k>0} Product_{d|k} 1/(1 - d*x^k).
%t A332199 m = 35; CoefficientList[Series[Product[1/(1 - i*x^(i*j)), {i, 1, m}, {j, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, Aug 23 2020 *)
%o A332199 (PARI) N=40; x='x+O('x^N); Vec(1/prod(i=1, N, prod(j=1, N\i, 1-i*x^(i*j))))
%o A332199 (PARI) N=40; x='x+O('x^N); Vec(1/prod(k=1, N, prod(d=1, k, 1-(k%d==0)*d*x^k)))
%Y A332199 Cf. A006171, A006906, A285245, A318415, A333653.
%K A332199 nonn
%O A332199 0,3
%A A332199 _Seiichi Manyama_, Aug 23 2020