A332202 Largest k >= 0 such that 3^k divides 2^(2^n-1) + 1.
0, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 0
Keywords
Examples
a(0) = 0 since 2^(2^0-1) + 1 = 2^0 + 1 = 2 is not divisible by 3. a(1) = 1 since 2^(2^1-1) + 1 = 2^1 + 1 = 3 is divisible just once by 3. a(2) = 2 since 2^(2^2-1) + 1 = 2^3 + 1 = 9 is divisible by 3^2. a(3) = 1 since 2^(2^4-1) + 1 = 2^15 + 1 = 32769 is divisible only once by 3.
Programs
-
PARI
apply( {A332202(n)=if(bittest(n,0), 1, n, valuation(n\2,3)+2)}, [0..99])
Comments