This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332204 #43 Aug 30 2024 10:18:56 %S A332204 0,1,2,3,4,5,5,6,7,8,9,9,10,11,12,13,14,15,15,16,17,17,16,17,17,18,19, %T A332204 20,21,22,22,23,24,25,26,26,27,28,29,30,31,31,32,31,31,32,33,33,34,35, %U A332204 36,37,38,39,39,40,41,42,43,43,44,45,46,47,48,49,49,50 %N A332204 a(n) is the real part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit). %C A332204 The representation of {f(n)} resembles a Koch curve (see illustrations in Links section). %C A332204 The sequence A065359 mod 8 gives the direction at each step as follows: %C A332204 3 _ 2 _ 1 %C A332204 \_ | _/ %C A332204 \_ | _/ %C A332204 \|/ %C A332204 4 ------.------ 0 %C A332204 _/|\_ %C A332204 _/ | \_ %C A332204 _/ | \_ %C A332204 5 6 7 %C A332204 We can also build {f(n)} with A096268 as follows: %C A332204 - start at the origin looking to the right, %C A332204 - for k=0, 1, ...: %C A332204 - move forward to the next lattice point %C A332204 (this point is at distance 1 or sqrt(2)), %C A332204 - if A096268(k)=0 %C A332204 then turn 45 degrees to the left %C A332204 otherwise turn 90 degrees to the right, %C A332204 - this connects the first differences of A065359 and A096268. %H A332204 Rémy Sigrist, <a href="/A332204/b332204.txt">Table of n, a(n) for n = 0..16384</a> %H A332204 Larry Riddle, <a href="http://ecademy.agnesscott.edu/~lriddle/ifs/kcurve/kcurve.htm">Koch Curve</a> %H A332204 Rémy Sigrist, <a href="/A332204/a332204_1.png">Illustration of first terms</a> %H A332204 Rémy Sigrist, <a href="/A332204/a332204_2.png">Representation of f(n) in the complex plan for n = 0..2^14</a> %H A332204 Rémy Sigrist, <a href="/A332204/a332204.gp.txt">PARI program for A332204</a> %H A332204 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A332204 a(2^k) = A217730(k) for any k >= 0. %F A332204 a(4^k+m) + a(m) = A217730(2*k) for any k >= 0 and m = 0..4^k. %e A332204 The first terms, alongside f(n) and A065359(n), are: %e A332204 n a(n) f(n) A065359(n) %e A332204 -- ---- ----- ---------- %e A332204 0 0 0 0 %e A332204 1 1 1 1 %e A332204 2 2 2+i -1 %e A332204 3 3 3 0 %e A332204 4 4 4 1 %e A332204 5 5 5+i 2 %e A332204 6 5 5+2*i 0 %e A332204 7 6 6+2*i 1 %e A332204 8 7 7+3*i -1 %e A332204 9 8 8+2*i 0 %e A332204 10 9 9+2*i -2 %e A332204 11 9 9+i -1 %e A332204 12 10 10 0 %e A332204 13 11 11 1 %e A332204 14 12 12+i -1 %e A332204 15 13 13 0 %e A332204 16 14 14 1 %t A332204 A065359[0] = 0; %t A332204 A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]]; %t A332204 g[z_] := z/GCD[Re[z], Im[z]]; %t A332204 Module[{n = 0}, Re[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* _Paolo Xausa_, Aug 28 2024 *) %o A332204 (PARI) \\ See Links section. %Y A332204 Cf. A065359, A096268, A217730, A332205 (imaginary part), A332206 (where f is real). %K A332204 nonn,base %O A332204 0,3 %A A332204 _Rémy Sigrist_, Feb 07 2020