A332205 a(n) is the imaginary part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit).
0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 9, 9, 8, 7, 7, 8, 7, 7, 6, 5, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 11, 12, 13, 14
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..16384
- Larry Riddle, Koch Curve
- Rémy Sigrist, PARI program for A332205
- Index entries for sequences related to coordinates of 2D curves
Crossrefs
Programs
-
Mathematica
A065359[0] = 0; A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]]; g[z_] := z/GCD[Re[z], Im[z]]; Module[{n = 0}, Im[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* Paolo Xausa, Aug 28 2024 *)
-
PARI
\\ See Links section.
Formula
a(2^(2*k-1)) = A007052(k) for any k >= 0.
a(4^k-m) = a(m) for any k >= 0 and m = 0..4^k.
Comments