cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332238 a(n) = n^(n-1) - Sum_{k=1..n-1} k^(k-1) * a(n-k).

This page as a plain text file.
%I A332238 #5 Feb 07 2020 20:50:23
%S A332238 1,1,6,47,493,6446,101009,1846631,38617674,909844075,23858239469,
%T A332238 689399172870,21769608499937,745964574859679,27570932237831874,
%U A332238 1093403260892542195,46315049663202237389,2087041161850908432022,99691702658041778953249,5031814773759672418067623
%N A332238 a(n) = n^(n-1) - Sum_{k=1..n-1} k^(k-1) * a(n-k).
%F A332238 G.f.: 1 - 1 / (1 + Sum_{k>=1} k^(k-1) * x^k).
%t A332238 a[n_] := a[n] = n^(n - 1) - Sum[k^(k - 1) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
%t A332238 nmax = 20; CoefficientList[Series[1 - 1/(1 + Sum[k^(k - 1) x^k, {k, 1, nmax}]), {x, 0, nmax}], x] // Rest
%Y A332238 Cf. A000169, A003319, A088342, A296715, A332239.
%K A332238 nonn
%O A332238 1,3
%A A332238 _Ilya Gutkovskiy_, Feb 07 2020