A332252 a(n) is the imaginary part of f(n) defined by f(0) = 0 and f(n+1) = f(n) + i^A000120(n) (where i denotes the imaginary unit). Sequence A332251 gives real parts.
0, 0, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, -1, -2, -2, -2, -3, -4, -4, -5, -5, -5, -4, -3, -3, -3, -4, -4, -5, -6, -6, -6, -7, -8, -8, -9, -9, -9, -8, -8, -9, -10, -10, -11, -11, -11, -10, -11, -11, -11, -10, -10, -9, -8, -8, -7, -7, -7
Offset: 0
Links
Programs
-
PARI
{ z=0; for (n=0, 67, print1 (imag(z) ", "); z += I^hammingweight(n)) }
Formula
For any k >= 0:
- a(2^(4*k)) = 0,
- a(2^(4*k+1)) = (-4)^k,
- a(2^(4*k+2)) = 2*(-4)^k,
- a(2^(4*k+3)) = 2*(-4)^k.
Comments