This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332253 #14 Dec 23 2020 01:51:15 %S A332253 1,0,1,0,1,1,0,2,6,4,0,2,9,12,5,0,3,22,51,48,16,0,4,50,199,346,275,82, %T A332253 0,5,80,411,972,1175,708,169,0,6,134,939,3061,5340,5160,2611,541,0,8, %U A332253 244,2279,9948,23850,33432,27391,12176,2272,0,10,461,6261,38866,132151,267459,331583,247448,102195,17966 %N A332253 Triangle read by rows: T(n,k) is the number of multiset partitions of weight n whose union is a k-set where each part has a different size. %C A332253 Each element of the k-set must be represented in the multiset partition. %H A332253 Andrew Howroyd, <a href="/A332253/b332253.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A332253 Triangle begins: %e A332253 1; %e A332253 0, 1; %e A332253 0, 1, 1; %e A332253 0, 2, 6, 4; %e A332253 0, 2, 9, 12, 5; %e A332253 0, 3, 22, 51, 48, 16; %e A332253 0, 4, 50, 199, 346, 275, 82; %e A332253 0, 5, 80, 411, 972, 1175, 708, 169; %e A332253 0, 6, 134, 939, 3061, 5340, 5160, 2611, 541; %e A332253 ... %e A332253 The T(3,1) = 2 multiset partitions are: %e A332253 {{1,1,1}} %e A332253 {{1},{1,1}} %e A332253 The T(3,2) = 6 multiset partitions are: %e A332253 {{1,1,2}} %e A332253 {{1,2,2}} %e A332253 {{1},{1,2}} %e A332253 {{1},{2,2}} %e A332253 {{2},{1,1}} %e A332253 {{2},{1,2}} %e A332253 The T(3,3) = 4 multiset partitions are: %e A332253 {{1,2,3}} %e A332253 {{1},{2,3}} %e A332253 {{2},{1,3}} %e A332253 {{3},{1,2}} %o A332253 (PARI) %o A332253 R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))} %o A332253 M(n)={my(v=vector(n+1, k, R(n, k-1)~)); Mat(vector(n+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))} %o A332253 {my(T=M(8)); for(n=1, #T~, print(T[n, ][1..n]))} %Y A332253 Column k=1 is A000009. %Y A332253 Right diagonal is A007837. %Y A332253 Row sums are A326517. %K A332253 nonn,tabl %O A332253 0,8 %A A332253 _Andrew Howroyd_, Feb 08 2020