This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332257 #12 Jul 26 2021 08:28:33 %S A332257 1,1,4,25,208,2161,26944,391945,6515968,121866721,2532496384, %T A332257 57890223865,1443611004928,38999338931281,1134616226381824, %U A332257 35367467110007785,1175946733416153088,41543231955279099841,1553948045857778827264,61355543097139813855705 %N A332257 E.g.f.: (1 - sinh(x)) / (1 - 2*sinh(x)). %H A332257 Michael De Vlieger, <a href="/A332257/b332257.txt">Table of n, a(n) for n = 0..401</a> %H A332257 Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, <a href="https://www.researchgate.net/publication/350886459_SUMS_RELATED_TO_THE_FIBONACCI_SEQUENCE">Sums related to the Fibonacci sequence</a>, Husson University (2021). %F A332257 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A006154(k) * a(n-k). %F A332257 a(n) ~ n! / (2*sqrt(5) * log((1 + sqrt(5))/2)^(n+1)). - _Vaclav Kotesovec_, Feb 08 2020 %t A332257 nmax = 19; CoefficientList[Series[(1 - Sinh[x])/(1 - 2 Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]! %o A332257 (PARI) seq(n)={Vec(serlaplace((1 - sinh(x + O(x*x^n))) / (1 - 2*sinh(x + O(x*x^n)))))} \\ _Andrew Howroyd_, Feb 08 2020 %Y A332257 Cf. A000557, A000670, A002866, A006154, A050351, A331608. %K A332257 nonn %O A332257 0,3 %A A332257 _Ilya Gutkovskiy_, Feb 08 2020