cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332266 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists successive blocks of k consecutive integers that differ by 2, where the m-th block starts with m, m >= 1, and the first element of column k is in row k^2.

This page as a plain text file.
%I A332266 #33 Dec 21 2020 07:29:40
%S A332266 1,2,3,4,1,5,3,6,2,7,4,8,3,9,5,1,10,4,3,11,6,5,12,5,2,13,7,4,14,6,6,
%T A332266 15,8,3,16,7,5,1,17,9,7,3,18,8,4,5,19,10,6,7,20,9,8,2,21,11,5,4,22,10,
%U A332266 7,6,23,12,9,8,24,11,6,3,25,13,8,5,1,26,12,10,7,3,27,14,7,9,5
%N A332266 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists successive blocks of k consecutive integers that differ by 2, where the m-th block starts with m, m >= 1, and the first element of column k is in row k^2.
%C A332266 This triangle can be interpreted as a table of partitions into consecutive parts that differ by 2 (see the Example section).
%e A332266 Triangle begins:
%e A332266    1;
%e A332266    2;
%e A332266    3;
%e A332266    4,  1;
%e A332266    5,  3;
%e A332266    6,  2;
%e A332266    7,  4;
%e A332266    8,  3;
%e A332266    9,  5,  1;
%e A332266   10,  4,  3;
%e A332266   11,  6,  5;
%e A332266   12,  5,  2;
%e A332266   13,  7,  4;
%e A332266   14,  6,  6;
%e A332266   15,  8,  3;
%e A332266   16,  7,  5,  1;
%e A332266   17,  9,  7,  3;
%e A332266   18,  8,  4,  5;
%e A332266   19, 10,  6,  7;
%e A332266   20,  9,  8,  2;
%e A332266   21, 11,  5,  4;
%e A332266   22, 10,  7,  6;
%e A332266   23, 12,  9,  8;
%e A332266   24, 11,  6,  3;
%e A332266   25, 13,  8,  5,  1;
%e A332266 ...
%e A332266 Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts that differ by 2:
%e A332266 .   ---------------------------------------------------------
%e A332266 Fig:   A     B     C       D         E        F         G
%e A332266 .   ---------------------------------------------------------
%e A332266 . n:   1     2     3       4         5        6         7
%e A332266 Row ---------------------------------------------------------
%e A332266 1   | [1];|  1; |  1; |  1;     |  1;    |  1;     |  1;    |
%e A332266 2   |     | [2];|  2; |  2;     |  2;    |  2;     |  2;    |
%e A332266 3   |     |     | [3];|  3;     |  3;    |  3;     |  3;    |
%e A332266 4   |     |     |     | [4],[1];|  4,  1;|  4,  1; |  4,  1;|
%e A332266 5   |     |     |     |  5, [3];| [5], 3;|  5,  3; |  5,  3;|
%e A332266 6   |     |     |     |         |        | [6],[2];|  6,  2;|
%e A332266 7   |     |     |     |         |        |  7, [4];| [7], 4;|
%e A332266 .   ---------------------------------------------------------
%e A332266 Figure F: for n = 6 the partitions of 6 into consecutive parts that differ by 2 (but with the parts in increasing order) are [6] and [2, 4]. These partitions have one part and two parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 2 of this table, starting at the row 6.
%e A332266 .
%e A332266 Figures H..L show the location (in the columns of the table) of the partitions of 8..12 (respectively) into consecutive parts that differ by 2:
%e A332266 .    -----------------------------------------------------------------------
%e A332266 Fig:        H            I            J              K             L
%e A332266 .    -----------------------------------------------------------------------
%e A332266 . n:        8            9            10             11            12
%e A332266 Row  -----------------------------------------------------------------------
%e A332266 1    |  1;        |  1;         |   1;        |   1;        |   1;         |
%e A332266 1    |  2;        |  2;         |   2;        |   2;        |   2;         |
%e A332266 3    |  3;        |  3;         |   3;        |   3;        |   3;         |
%e A332266 4    |  4,  1;    |  4,  1;     |   4,  1;    |   4,  1;    |   4,  1;     |
%e A332266 5    |  5,  3;    |  5,  3;     |   5,  3;    |   5,  3;    |   5,  3;     |
%e A332266 6    |  6,  2;    |  6,  2;     |   6,  2;    |   6,  2;    |   6,  2;     |
%e A332266 7    |  7,  4;    |  7,  4;     |   7,  4;    |   7,  4;    |   7,  4;     |
%e A332266 8    | [8],[3];   |  8,  3;     |   8,  3;    |   8,  3;    |   8,  3;     |
%e A332266 9    |  9, [5], 1;| [9], 5, [1];|   9,  5,  1;|   9,  5,  1;|   9,  5,  1; |
%e A332266 10   |            | 10,  4, [3];| [10],[4], 3;|  10,  4,  3;|  10,  4;  3; |
%e A332266 11   |            | 11,  6, [5];|  11, [6], 5;| [11], 6,  5,|  11,  6;  5; |
%e A332266 12   |            |             |             |             | [12],[5],[2];|
%e A332266 13   |            |             |             |             |  13, [7],[4];|
%e A332266 14   |            |             |             |             |  14,  6, [6];|
%e A332266 .    -----------------------------------------------------------------------
%e A332266 Figure I: for n = 9 the partitions of 9 into consecutive parts that differ by 2(but with the parts in increasing order) are [9] and [1, 3, 5]. These partitions have one part and three parts respectively. On the other hand, we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 9.
%e A332266 .
%e A332266 Illustration of initial terms arranged into a triangular structure:
%e A332266 .                                                           _
%e A332266 .                                                         _|1|
%e A332266 .                                                       _|2  |
%e A332266 .                                                     _|3   _|
%e A332266 .                                                   _|4    |1|
%e A332266 .                                                 _|5     _|3|
%e A332266 .                                               _|6      |2  |
%e A332266 .                                             _|7       _|4  |
%e A332266 .                                           _|8        |3   _|
%e A332266 .                                         _|9         _|5  |1|
%e A332266 .                                       _|10         |4    |3|
%e A332266 .                                     _|11          _|6   _|5|
%e A332266 .                                   _|12           |5    |2  |
%e A332266 .                                 _|13            _|7    |4  |
%e A332266 .                               _|14             |6     _|6  |
%e A332266 .                             _|15              _|8    |3   _|
%e A332266 .                           _|16               |7      |5  |1|
%e A332266 .                         _|17                _|9     _|7  |3|
%e A332266 .                       _|18                 |8      |4    |5|
%e A332266 .                     _|19                  _|10     |6   _|7|
%e A332266 .                   _|20                   |9       _|8  |2  |
%e A332266 .                 _|21                    _|11     |5    |4  |
%e A332266 .               _|22                     |10       |7    |6  |
%e A332266 .             _|23                      _|12      _|9   _|8  |
%e A332266 .           _|24                       |11       |6    |3   _|
%e A332266 .          |25                         |13       |8    |5  |1|
%e A332266 ...
%e A332266 The number of horizontal line segments in the n-th row of the diagram equals A038548(n), the number of partitions of n into consecutive parts that differ by 2.
%Y A332266 Tables of the same family where the consecutive parts differ by d are A010766 (d=0), A286001 (d=1), this sequence (d=2), A334945 (d=3), A334618(d=4).
%Y A332266 Cf. A038548, A060872, A066839, A303300, A330466.
%K A332266 nonn,tabf
%O A332266 1,2
%A A332266 _Omar E. Pol_, Feb 08 2020