cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A316496 Number of totally strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 13, 18, 20, 27, 27, 38, 41, 52, 56, 73, 77, 99, 105, 129, 145, 176, 186, 229, 253, 300, 329, 395, 427, 504, 555, 648, 716, 836, 905, 1065, 1173, 1340, 1475, 1703, 1860, 2140, 2349, 2671, 2944, 3365, 3666, 4167, 4582, 5160, 5668
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2018

Keywords

Comments

An integer partition is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong partition.

Examples

			The a(1) = 1 through a(8) = 12 totally strong partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (421)      (332)
                                     (2211)    (2221)     (431)
                                     (111111)  (1111111)  (521)
                                                          (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
For example, the partition (3,3,2,1) has run-lengths (2,1,1), which are weakly decreasing, but they have run-lengths (1,2), which are not weakly decreasing, so (3,3,2,1) is not totally strong.
		

Crossrefs

The Heinz numbers of these partitions are A316529.
The version for compositions is A332274.
The dual version is A332275.
The version for reversed partitions is (also) A332275.
The narrowly normal version is A332297.
The alternating version is A332339 (see also A317256).
Partitions with weakly decreasing run-lengths are A100882.

Programs

  • Mathematica
    totincQ[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 07 2020

A332337 Number of widely totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 12, 23, 54, 77, 116, 205, 352, 697, 1174, 2013, 3538, 6209, 10830
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is widely totally strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a widely totally strongly normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11). These are all normal with weakly decreasing run-lengths, and the last is all 1's, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The case of partitions is A332278.
The non-strong version is A332279.
Heinz numbers in the case of partitions are A332291.
The narrow version is A332336.
The alternating version is A332340.
The co-strong version is this same sequence.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332336(n) - 1.

A332275 Number of totally co-strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 17, 22, 30, 32, 49, 53, 70, 82, 108, 119, 156, 171, 219, 250, 305, 336, 424, 468, 562, 637, 754, 835, 1011, 1108, 1304, 1461, 1692, 1873, 2212, 2417, 2787, 3109, 3562, 3911, 4536, 4947, 5653, 6265, 7076, 7758, 8883, 9669, 10945, 12040
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is totally co-strong if it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and are themselves a totally co-strong sequence.
Also the number of totally strong reversed integer partitions of n.

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (421)
                                     (411)     (511)
                                     (2211)    (4111)
                                     (3111)    (22111)
                                     (21111)   (31111)
                                     (111111)  (211111)
                                               (1111111)
For example, the partition y = (5,4,4,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1) has run-lengths (1,3,3,6,6), with run-lengths (1,2,2), with run-lengths (1,2), with run-lengths (1,1), with run-lengths (2), with run-lengths (1). All of these having weakly increasing run-lengths, and the last is (1), so y is counted under a(44).
		

Crossrefs

The strong version is A316496.
The version for reversed partitions is (also) A316496.
The alternating version is A317256.
The generalization to compositions is A332274.

Programs

  • Mathematica
    totincQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]

A332338 Number of alternately co-strong compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 24, 39, 72, 125, 224, 387, 697, 1205, 2141, 3736, 6598, 11516, 20331, 35526, 62507, 109436, 192200, 336533, 590582, 1034187
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2020

Keywords

Comments

A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.

Examples

			The a(1) = 1 through a(5) = 12 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (121)   (113)
                    (1111)  (131)
                            (212)
                            (221)
                            (1112)
                            (1121)
                            (11111)
For example, starting with the composition y = (1,6,2,2,1,1,1,1) and repeatedly taking run-lengths and reversing gives (1,6,2,2,1,1,1,1) -> (4,2,1,1) -> (2,1,1) -> (2,1) -> (1,1) -> (2). All of these have weakly increasing run-lengths and the last is a singleton, so y is counted under a(15).
		

Crossrefs

The case of partitions is A317256.
The recursive (rather than alternating) version is A332274.
The total (rather than alternating) version is (also) A332274.
The strong version is this same sequence.
The case of reversed partitions is A332339.
The normal version is A332340(n) + 1 for n > 1.

Programs

  • Mathematica
    tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tniQ]],{n,0,10}]
Showing 1-4 of 4 results.