A332275 Number of totally co-strong integer partitions of n.
1, 1, 2, 3, 5, 6, 11, 12, 17, 22, 30, 32, 49, 53, 70, 82, 108, 119, 156, 171, 219, 250, 305, 336, 424, 468, 562, 637, 754, 835, 1011, 1108, 1304, 1461, 1692, 1873, 2212, 2417, 2787, 3109, 3562, 3911, 4536, 4947, 5653, 6265, 7076, 7758, 8883, 9669, 10945, 12040
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (311) (51) (61) (1111) (2111) (222) (322) (11111) (321) (421) (411) (511) (2211) (4111) (3111) (22111) (21111) (31111) (111111) (211111) (1111111) For example, the partition y = (5,4,4,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1) has run-lengths (1,3,3,6,6), with run-lengths (1,2,2), with run-lengths (1,2), with run-lengths (1,1), with run-lengths (2), with run-lengths (1). All of these having weakly increasing run-lengths, and the last is (1), so y is counted under a(44).
Crossrefs
Programs
-
Mathematica
totincQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]]; Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]
Comments