A332276 Heinz numbers of widely totally normal integer partitions.
1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 630, 1024, 1050, 1350, 1500, 2048, 2100, 2250, 2310, 2520, 2940, 3150, 3780, 4096, 4200, 4410, 5880, 8192, 8820, 9450, 10500, 11550, 12600, 13230, 14700
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 30: {1,2,3} 32: {1,1,1,1,1} 60: {1,1,2,3} 64: {1,1,1,1,1,1} 90: {1,2,2,3} 128: {1,1,1,1,1,1,1} 150: {1,2,3,3} 180: {1,1,2,2,3} 210: {1,2,3,4} 256: {1,1,1,1,1,1,1,1} 300: {1,1,2,3,3} 360: {1,1,1,2,2,3} For example, starting with (4,3,2,2,1), the partition with Heinz number 630, and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1). These are all normal and the last is all 1's, so 630 belongs to the sequence.
Crossrefs
Heinz numbers of normal integer partitions are A055932.
The case of reversed integer partitions is A332276 (this sequence).
The enumeration of these partitions by sum is A332277.
The enumeration of the generalization to compositions is A332279.
The co-strong version is A332290.
The strong version is A332291.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; gnaQ[y_]:=Or[y=={},Union[y]=={1},And[Union[y]==Range[Max[y]],gnaQ[Length/@Split[y]]]]; Select[Range[1000],gnaQ[primeMS[#]]&]
Comments