This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332277 #12 Jun 26 2020 06:19:19 %S A332277 1,1,1,2,2,2,2,2,2,3,4,4,2,4,4,6,3,5,7,6,8,12,9,12,13,11,12,18,17,12, %T A332277 32,19,25,33,30,28,44,33,43,57,51,60,83,70,83,103,96,97,125,117,134, %U A332277 157,157,171,226,215,238,278,302,312,359,357,396,450,444,477,580 %N A332277 Number of widely totally normal integer partitions of n. %C A332277 A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths. %C A332277 Also the number of widely totally normal reversed integer partitions of n. %e A332277 The a(n) partitions for n = 1, 4, 10, 11, 16, 18: %e A332277 1 211 4321 33221 443221 543321 %e A332277 1111 33211 322211 4432111 4333221 %e A332277 322111 332111 1111111111111111 4432221 %e A332277 1111111111 11111111111 4433211 %e A332277 43322211 %e A332277 44322111 %e A332277 111111111111111111 %t A332277 recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]]; %t A332277 Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}] %Y A332277 Normal partitions are A000009. %Y A332277 Taking multiplicities instead of run-lengths gives A317245. %Y A332277 Constantly recursively normal partitions are A332272. %Y A332277 The Heinz numbers of these partitions are A332276. %Y A332277 The case of all compositions (not just partitions) is A332279. %Y A332277 The co-strong version is A332278. %Y A332277 The recursive version is A332295. %Y A332277 The narrow version is a(n) + 1 for n > 1. %Y A332277 Cf. A181819, A316496, A317081, A317256, A317491, A317588, A329746, A329747, A332289, A332290, A332291, A332296, A332297, A332336, A332337, A332340. %K A332277 nonn %O A332277 0,4 %A A332277 _Gus Wiseman_, Feb 12 2020 %E A332277 a(61)-a(66) from _Jinyuan Wang_, Jun 26 2020