This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A332278 #16 Mar 11 2021 18:15:54 %S A332278 1,1,1,2,2,1,2,1,1,2,3,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,1,1,3,1,1,1,1,1, %T A332278 1,2,2,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,2,1, %U A332278 1,1,1,1,1,1,1,1,1,1,2 %N A332278 Number of widely totally co-strongly normal integer partitions of n. %C A332278 A sequence of integers is widely totally co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-lengths (co-strong) which are themselves a widely totally co-strongly normal sequence. %C A332278 Is this sequence bounded? %e A332278 The a(1) = 1 through a(20) = 2 partitions: %e A332278 1: (1) %e A332278 2: (11) %e A332278 3: (21),(111) %e A332278 4: (211),(1111) %e A332278 5: (11111) %e A332278 6: (321),(111111) %e A332278 7: (1111111) %e A332278 8: (11111111) %e A332278 9: (32211),(111111111) %e A332278 10: (4321),(322111),(1111111111) %e A332278 11: (11111111111) %e A332278 12: (111111111111) %e A332278 13: (1111111111111) %e A332278 14: (11111111111111) %e A332278 15: (54321),(111111111111111) %e A332278 16: (1111111111111111) %e A332278 17: (11111111111111111) %e A332278 18: (111111111111111111) %e A332278 19: (1111111111111111111) %e A332278 20: (4332221111),(11111111111111111111) %t A332278 totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]]; %t A332278 Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}] %Y A332278 Not requiring co-strength gives A332277. %Y A332278 The strong version is A332297(n) - 1 for n > 1. %Y A332278 The narrow version is a(n) - 1 for n > 1. %Y A332278 The alternating version is A332289. %Y A332278 The Heinz numbers of these partitions are A332293. %Y A332278 The case of compositions is A332337. %Y A332278 Cf. A000009, A100883, A107429, A133808, A181819, A316496, A317245, A317491, A329746, A332279, A332290, A332291, A332292, A332296, A332576. %K A332278 nonn,more %O A332278 0,4 %A A332278 _Gus Wiseman_, Mar 05 2020 %E A332278 a(71)-a(78) from _Jinyuan Wang_, Jun 26 2020